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1. Introduction

The purposeof this article is to describethe electromagneticinteractionsof moleculeswith surfaces,
and in particular with metal surfaces.Interestin this subjecthasbeenstimulatedin recentyearsby
experimentson surface-enhancedRamanscattering,on fluorescenceof moleculesnearmetals,andon
infrared and inelasticelectron spectroscopyof adsorbedmolecules.The phenomenaobservedin the
variousexperimentshavemuch in commonfrom the point of view of electromagnetictheory,and we
show how a few generaltheoreticaltechniquescan be appliedto all of them.We do not, however,give a
comprehensivereviewof theexperiments.Thereareanumberof suchreviews,andwereferto themin the
appropriatechapters.

The methodswe describeareessentiallythoseof classicalelectromagnetictheory,theideabeingthat
the moleculeand the surfaceare separatedso that their only interaction is via the electromagnetic
fields. This meansthat we leaveout importantquantummechanicaleffects,such as the hybridizationof
the molecularorbitals with the electronicwavefunctionsin the metal.Such effectscould be addressed
usingquantummechanicalapproaches,suchas theHartree—Fockor densityfunctionalmethods.These
methods,however,are in practicelimited to ground-statepropertiesand can give little insight into the
dynamicalpropertieswe consider.Thesemethodsare also valid only very nearthe surface.Far away
from thesurfacetheyfail to describeeffectsarisingfrom electromagneticinteractions,an examplebeing
the Van derWaalsforce attractinga moleculeto a surface.In a certainsensethe electromagneticand
quantummechanicalmethodsare complementary,the former describingthe distant interactions,the
latter the very short-rangeinteractions.Our intention is to pressthe electromagneticcalculationsas
closeto the surfaceas is feasible.When the quantummechanicaleffectsneglectedin our discussionare
small, as in the caseof molecularfluorescence,quantitativecomparisonsbetweentheory and experi-
ment can be made.When they are not small, or when theyare difficult to estimate,as in the caseof
surface-enhancedRamanscattering,the comparisonswill be lessquantitative.In thesecasesthe value
of our treatmentof a particular electromagneticeffect will be in the insight provided by a careful
calculationof that one aspectof the problem.

Some of the processeswe do consider, such as molecular fluorescence,are basically quantum
mechanicalin nature.However,theycan be describedwithin the frameworkof the so-calledsemiclas-
sical theory of radiation. In this theory the electromagneticinteractionsare describedby classical
Maxwell equations,while the classicalsourcestrengthis expressedin termsof the quantummechanical
transition matrix elements[1]. To invoke a fully quantummechanicalformalism to describesuch
processeswould, in our view, obscurethe physicalinsightgained from the results.

This article is organizedas follows. In chapter2 we discussthe reflection of electromagneticwavesat
a plane interface, showing how to extend the classical Fresnel formulas to the caseof a nonlocal
medium.This is the basictheoreticalingredientthat we usein the discussionof the variousphenomena
in succeedingchapters.Two commonly usedmodelsfor calculatingthe surfaceresponseof a metalare
describedin detail: (1) the semiclassicalinfinite barriermodel, in which theelectrondensity is uniform
up to the barrier,whereit abruptly goesto zero, and (2) the quantuminfinite barrier model, in which
the electrondensityundergoesFriedel-typeoscillationsnearthe surfaceand goes smoothlyto zero at
the barrier. Also discussedaremodelsthat allow for a moregeneralform of the electrondensityprofile
at the surface,but which to date haveonly beensolvedin the long-wavelengthlimit.

In chapter3 we discussmolecularfluorescenceneara metal. Herethe theoreticalproblemis that of
the radiation by an oscillatingdipole abovea nonlocalmetal, andwe solve it by superposingthe waves
constructedin chapter2. We use the result to discussthe decayinto various modessuch as surface
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plasmonsand electron—holeexcitations.We also extendthe resultsof chapter2 to the caseof layered
structuresand comparethe results with recentexperiments.Finally, still in chapter3 we consider
molecularfluorescenceneara smallmetalsphere,introducing the multipole polarizabilities,which are
the sphericalanalogsof the plane-wavereflection coefficients.

In chapter3 the fluorescingmoleculeis treatedas a radiatingdipole whosedecayrate is modified by
the inducedfields (imagefields) from the metal but whosefrequencyandtransitionmoment are not. In
the following two chapters,devoted,respectively, to infrared absorption and Raman scatteringby
adsorbedmolecules,we considerproblemsin whichthe effect of theseinductionfields is significant,and
the renormalizationof the radiatingdipole is required.In chapter4 weshowhow to includesuch effects
in a consistentcalculationof the shift and broadeningof a vibrational absorptionline in an adsorbed
molecule. We take into account finite molecularsize and nonlocal metal response,aspectsof the
calculationalready introducedin chapters2 and 3. We comparethe resultswith experimentson CO
adsorbedon Cu.

In chapter5 we first apply the theoreticalingredientsintroducedin the previouschaptersto discuss
the enhancementof Raman scatteringfor a moleculeadsorbedon a smooth surface.The result is a
physically consistentcalculationof what is termedthe imageenhancementeffect: the increasein the
dipole moment inducedin the moleculedue to the imagefields from the metal. We then considerthe
effects of various typesof surfaceroughnesson the Ramanscatteringof adsorbedmolecules,first for
the caseof periodic gratingsruledonto the surface,then for the caseof randomroughening,andfinally
for the caseof discretemetal particlesthat havea resonantpolarizability. The effects associatedwith
the polarizability resonancesof discrete metal particles lead to what is commonly referredto as the
“electromagneticexplanation” for surface-enhancedRaman scattering.We critically examine this
explanationin comparisonwith experimentalresults.

2. Reflection of electromagneticwavesat an interface

In this chapterwe discussthe reflection and transmissionof electromagneticwavesincidentupon a
surface.As a preliminary stepand to fix the notation,we begin with the Maxwell equations,which in
Gaussianunits takethe form [2,3]

laB . laD 4~-.divB=O, curlE+——~---=O, divD=4irp, curlB——-~-=—j. (2.1)

Herethe secondequationis Faraday’slaw of induction,the third is Gauss’slaw, andthe fourth we call
Ampere’s law, although historically Ampere’s law did not havethe displacementcurrent term. For
fields varying harmonically in time [E(r, t) = E(r) e’”’t, and similarly for the other fields]1 Faraday’s
andAmpere’s laws become

curlE—i~B=O, curlB+i~-D=4-~j. (2.2)

The first andthird equationsin (2.1) follow from theseand the continuityequation

t We make extensive use of a notation in which the samesymbolstandsfor a quantity with and without an exponentialfactor, here e’”’. It
shouldalwaysbe clear from thecontextwhich quantity is to be understood.
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—iwp+divjO. (2.3)

For a local medium the dielectricrelation betweenthe electricdisplacementD and the electric field E
takesthe form

D(r) = c(w)E(r), (2.4)

whereE(w) is the frequency-dependentdielectricconstant.Herethe term “local” refersto the fact that
(2.4) relatesD andE at the samepoint in space.For an infinite homogeneousbut nonlocalmedium,the
dielectricrelationis simply expressedas a relationbetweenplanewave amplitudesof given frequencyw
andwavevectork: [E(r, t) = E exp[i(k r — wt)], etc.]

D = ee(k, w)k Eic? + e~(k,w)(E — k Ek), (2.5)

where~ ande~are, respectively,the longitudinal andtransversedielectricconstants.
The simplestreflection problem is that in which a planewave is incident upon the planeboundary

between two homogeneousmedia described by local dielectric constantsEi(w) and s2(w). In this
geometryone distinguishesbetweenP-polarizedwaves, in which the magnetic field of the wave is
parallel to the interface,and S-polarizedwaves, in which the electric field is parallel to the interface.
The reflection andtransmissioncoefficientsarethen given by the well-known Fresnelformulas.In the
P-polarizedcasetheseare

rV2 = (q1~2— q2E1)/(q1e2+q2E1), t~ 2q1~/(q~c~+q2E1), (2.6)

andin the S-polarizedcasetheyare

= (q1 — q2)/(qi+ q2), t
t~= 2q

1!(q1+ q2) . (2.7)

In theseformulas the incidentwavehasbeenchosento be in the mediumwith dielectric constantc1,
and

q3 = (E1w
21c2— p2)”2, Tm q

1 > 0 , (2.8)

wherep is the componentof the wavevectorparallel to the interface.
The derivationof the Fresnelformulas appearsin any textbook on electrodynamics[2—5].However,

to fix the notation,a brief derivationmightbe usefulhere.We choosea coordinatesystemin which the
xy planeis the boundarybetweenthe two media,with the mediumabovethe plane(positivez) having
dielectricconstantEi(w) andthatbelow havingdielectricconstantE2(w). We write the coordinatevector
r = p + zz~,wherep xA~+ y9 is the componentparallel to the interface.The fields vary harmonicallyin
time. The incident wave is in the medium above the surface, propagating downward. Then for
P-polarizedwavesthe magneticfield in the two mediahasthe form

B(r) = B~exp(ip ‘p)~x ~exp( iq1z)+r12exp(iq1z), (2.9)



200 G. W. Ford and W.H. Weber.Electromagneticinteractionsof moleculeswith metalsurfaces

wherep is the componentof the wavevectorparallelto the surfaceandB~is a complexamplitude.The
electricfield is then given by Ampere’slaw,

~ exp(iq1z), z >0

E(r) = £ B~exp(ip ~) + ~ Ft (2.10)

(0 _~~2q2pp exp(-iq2z). z<0.

Faraday’slaw now requires

p
2+q~=s

1w
2/c2, Imq

1>O, (2.11)

wherethe sign of the imaginarypart of q1 hasbeenchosenso the wavesaredampedin the direction of
propagation.Finally, the requirementthat the componentsof B and E parallel to the interface be
continuousgives

1 + r~2= t~, (q1/Ft)(l — r~’2)= (q2IE2)t~’2, (2.12)

from which we obtain the formulas(2.6).

In the sameway, for S-polarizedwavesthe electric field hasthe form
...1exp(—iqiz)+r~2exp(iqtz), z>0

E(r) = E~exp(tp . p)z >< P~~ exp(—iq2z), z <0 - (2.13)

The magneticfield is now given by Faraday’slaw,

B( ~ ~f(qlp+pz)exp(iqtz)+ r~2(—qi~+pi)exp(iqtz), z >0~T) — i-js exp~ipP~s .‘ - 2. 4w tt12(q2p+pz)exp(—lq2z), z<0.

Continuity of the componentsof E andB parallel to the interfacenow requires

1~ S_S j1_ S\_ S~ -r r~— ~ 12 , q1~i r12j — q2i 12 ,

from which weobtain the formulas(2.7).
The Fresnelformulasare accuratefor manyapplications,but when applied to the casein which the

fields vary on an atomicscale,thereareseriousdiscrepancies.Our first aim in thischapterwill therefore
be to formulatethe appropriategeneralizationof the classicalFresnelformulas.This we do in section
2.1, where we introduce the concept of surface impedanceand use it to construct the reflection
coefficient for the so-calledsemiclassicalinfinite barrier (SCIB) model of a metal. In section 2.2 we
discuss the quasistaticapproximation. In section 2.3 we discussthe quantuminfinite barrier (QIB)
model. Finally, in section 2.4 we discusscorrectionsto the Fresnel formulas in the long-wavelength
limit, obtainingformulasthat canbe evaluatedfor othermodelswith a smoothtransitionof theelectron
densityacrossthe interface.
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2.1. Reflection by a nonlocal medium — the SCIBmodel

We hereconsiderthe reflection of planeelectromagneticwavespropagatingin a mediumwith (local)
dielectric constant~(w) and incident upon a half-spacein which the mediumhasa generalnonlocal
response.As in the abovediscussionof theFresnelformulas,we choosethe boundarybetweenthetwo
mediato be the xy plane,with the local medium abovethe planecalled medium 1 and the nonlocal
mediumbelowthe planecalled medium2. The fields in medium 1 arethereforeof the sameform as in
the Fresnelcase.Thus,in the P-polarizedcase,as in (2.9) and (2.10), we can write

E(r) = — —f-— Bp exp(ip . p)[(p2 + q
1~)exp(—iqiz)+ r~2(p~— qij3) exp(iqtz)],

B(r) = B~exp(ip p)i x~3~exp(—iq1z)+ r~2exp(iqiz)] , z >0. (2.16)

Similarly, in the S-polarizedcase,asin (2.13) and(2.14),we can write

E(r)= Esexp(ip.p)~xft[exp(—iq1z)+ r~2exp(iqtz)],

B(r) = -~- Esexp(ip p)[(pi + q1~)exp(—iqiz)+ r~2(pi — qtJ
3)exp(iqiz)], z >0. (2.17)

In theseexpressions,as in (2.8),

q
1 = (F1w

21c2 — p2)112, Tm q
1 >0. (2.18)

When the medium2 is nonlocal,it is convenientto formulatethe discussionin termsof the surface
impedances,as definedby LandauandLifshitz [3] andby Garcia—MolinerandFlores [6],

~ } , ZS(p,w)~T~[~<J~E} (2.19)
C Z P inside C P inside

wherethe fields are evaluatedjust inside the medium 2.t Since the componentsof the electric and
magnetic fields parallel to the interface are always continuous across the interface, the surface
impedancesmust be equalto the sameexpressionsevaluatedjust outside the medium 2, wherethe
fields havethe form (2.16—2.17). We obtain from this the following expressionsfor the reflection
coefficientsin termsof the surfaceimpedances:

~ 4irgi/w~1—Z~’ ~ _ZS_4rrwlc
2gi 220r

12 — 4irq1!we1+ z~ r1~— zs + 4im1c
2q

1 ( . )

Thus,a knowledgeof thesurfaceimpedancesis equivalentto a knowledgeof the reflection coefficients.
The advantagegainedby introducingthe surfaceimpedancesis that theycan be expressedentirely in
termsof the solutionsof the field equationswithin the medium2 alone.

tin this formulationit would appearthatthesurfaceof the medium2 would haveto be abrupt,with no materialproperties,e.g., conduction
electronsin a metal,extendingoutsidethe surface.However, we can still use thesedefinitions if we choosethe interfacebetween“inside” and
“outside” to beplacedasmall distanceoutsidetheactualsurface.
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The calculationof the surfaceimpedancesdependsupon the descriptionof the medium below the
surface.For a metal the simplestapproachthat includesthe featuresof nonlocality is the semiclassical
infinite barrier (SCIB) model, which correspondsto an assumptionof specular reflection of the
conductionelectronsat themetal surface.This modelwas first discussedby ReuterandSondheimer[7],
in connectionwith the anomalousskin effect, andlater by Kliewer and Fuchs [8]. The idea is that the
conductionelectronsare treatedas a classicalideal gas, but with Fermi—Dirac statistics.Then, from a
considerationof the Boltzmannequationfor the electrons,oneseesthat when the reflection is specular,
the fieldswithin the metalhalf-spaceare identical to the fields in an infinite metalarisingfrom a source
correspondingto a currentsheetat the surface.A picture illustrating this model is shown in fig. 1. The
heavyhorizontal line representsthe currentsheetat the surface.The thin solid line representsthe path
of an electronin the plasmabelow the surface,moving in the fields dueto the currentsheet,andbeing
specularly reflected. The thin dashed line representsthe path of a correspondingelectron in a
“phantom” plasmaabovethe surface.Clearly, if the specularlyreflecting barrier is removed,thereis no
change,the electronsaboveand belowmerelychangeplaces.

The prescriptionis thereforethe following. In the infinite metal, with dielectric relation of the form
(2.5), one solvesthe Maxwell equationswith a planecurrent sourceof the form

j(r, t) = J6(z)exp[i(p . p — wt)]. . J = 0. (2.21)

The solutioncan be written

E(r, t) = E(z)exp[i(p p — wt)] , B(r, t) = B(z)exp[i(p p — wt)], (2.22)

where

2 1 / J—k.Jk/k2 k~Jk \ -

E(z)= j dq ~E,(k,w) — c2k2/w2+ k2~
1(k.~ e

B(z)= J dq F,(k,w) - c
2k2/w2e°, (2.23)

/
/

\ /

\ /
\ /

Fig. 1. Specularreflectiontrajectoriesfor an electronand its image in theSCIB model.
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in which k = p + qi in the integrands.The surfaceimpedancesare thengiven by (2.19) usingthe fields
(2.23) evaluatedin the limit z —~0. To form thislimit we first notethat for an isotropicmediume~(k, w)
and e1(k, w) areeven functionsof k and, hence,q in the integrandsof (2.23). We can use this fact to
replacethe integralsover all q by integralsover positiveq only. For the componentsof the electricfield
parallel to the interface, the resulting integral is well behaved,and one obtainsthe limit by simply
setting z = 0 in the integrand.The componentsof the magnetic field parallel to the interface are,
however,proportionalto the integral

I = d g ~iqz — 2~ d g sin gz 224
— q E5(k, w)—c

2k2/w2 — 1 q e
5(k, co)— c

2k2/w2’

which appearsto vanishin the limit z—~0. But this is true only for theintegralover any finite interval.
For largeq we can usethe fact that e~(oo,w) is finite to write

2iw2 . I singz iirw2
lim I=—-—-~-lini I dq =—y-. (2.25)
z-stY C z—.OJ q C

0

With this one getsthe result

8if if g2 p2 ‘\Z (p, w) — — j dq ~ ~ w) — c2k2/w2 + Ee(k,w))’

ZS(p,w) = ~ J dq e~(k, w) — c2k2/w2’ SCIB (2.26)

wherek2 = p2 + q2 in the integrals.
Since the argumentleading to the expressions(2.26) for the surfaceimpedancesrelies upon the

reflection symmetryof the classicalBoltzmannequation,strictly speaking,the infinite mediumdielectric
constantsobtained in the semiclassicalapproximation should be used in theseexpressions.These
dielectric constantsappearin many places;one of the clearestandmost detaileddiscussionsis that of
Lindhard [9]. When the effects of collisions are taken into account in the single relaxation-time
approximationthe resultcan be written

,~ ~ ~ 3w~ u2f�(0,u)
E�(.,K,(0)— Ebl.~W)+ . . ,w+ivw+ivf~(0,u)

e
5(k, to) = Eb(a)) — w(w+ i~)~~~°’u), (semiclassical) (2.27)

in which Eb is a backgroundwavevector-independentdielectric constantassociatedwith the bound
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electrons,tii is the electroncollision frequency,w~,= (4rrne2lm)”2 is the plasmafrequency,and

u = (to + iP)/kvF, (2.28)

with VF the Fermi velocity. The functionsft andf
t are

f�(0,u) = i — ~uIn (u + i)/(u — i), f~(0,u) = ~u
2— ~u(u2— 1) ln(u + i)/(u — 1) . (2.29)

The redundantvariable in f~and f~,here set equalto zero, is presentbecausetheseare in fact the
semiclassicallimits of functionsintroducedbelow for the quantumgas.

Although, to be completelyconsistent,the SCIB modelshouldemploy the semiclassicalexpressions
(2.27)in the formulas (2.26)for the surfaceimpedances,it hasbecomecustomaryto extendthe model
by usinginsteadthe quantuminfinite medium dielectric constants.Theseare~

3w~ u2f�(z,u)ec(k, to) = Eb(W) + to + it.’ to + i’-’fe(z, u)/fe(z,0)

e~(k, to) = Eb(W)— w~{w[f,(z,u)—3z2fe(z,u)] + iv[f,(z, 0)— 3z2f�(z,0)]}/w2(w + it.’), (2.30)

where

u=(w+iI-’)/kvF, z=k/2kF, (2.31)

with VF the Fermi velocity andkF = mvF/h the Fermi wavevector.The functionsf,~andf, are

1—(z—u)2 z—u+1 1—(z+u)2 z+u+1f~(z,u)=
2+ In + In8z z—u—1 8z z+u—1

ft(z, u) = ~(z2 + 3U2 + 1)- 3 [1- (z— u)212In Z - ~ - 2~u)2]2 In u + (2.32)

In (2.30) thesefunctionswith argumentu set equalto zeroareto beinterpretedas the limit as u goes to
zero throughpositiveimaginary values,so that

fe(z,0)=~+ ~ ~ ~, f,(z,0)= ~(z2+ l)~3(1~ In ~ ~. (2.33)

Thesemiclassicallimit correspondsto the limit z —~0 in theseexpressions,in which casethe expressions
(2.30)reduceto the semiclassicalexpressions(2.27). In fact in manyapplicationsthequantity z is small,

fIt is well knownbut not widely explainedthat theboundandfree electronresponseareadditiveandthat thereis no local field correction in a
plasma.The bestexplanationstill seemsto be that given in theclassicpapersof Darwin [101.

f The derivation of theseformulashasa rathercheckeredhistory. They werefirst obtainedby Lindhard[9] for thespecialcasev = 0 and 5~= 1.
Later Kliewer andFuchs [11] attemptedto include theeffectsof finite electroncollision frequencyby using constraintsof physicalconsistencyto
guesstheform. Unfortunatelytheir conjectureswere not quite correct. Thecorrect form for the longitudinal dielectric constantwas given by
Mermin [12],while that for thetransversecasehas only recentlybeenobtainedby one of us[13].
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and there is little reason to prefer quantum infinite medium expressionsover the semiclassical
expressions.The most important physical phenomenonnot describedproperly by the semiclassical
expressionsis the sharpcutoff of electron—holepair absorptionat large wavevectors.We discussthis
phenomenonin chapter3 in connectionwith molecularfluorescence.

2.2. Thequasistaticapproximation

The quasistaticapproximation to Maxwell’s equations is discussedin most textbookson elec-
trodynamicsas an approximationappropriatefor finding the magneticfield due to currentsvarying
slowly in time [3,6~.It is usually statedas an approximationin which the displacementcurrent in
Ampere’slaw is neglected.This statement,while appropriatefor the applicationsenvisionedin these
texts, is not sufficiently generalfor our purposes.In fact, the quasistaticapproximationarisesfrom a
systematicexpansionof Maxwell’s equationsin powers of c1, and we exhibit this in the following
paragraph.We then discussthe conditionsof validity of the approximation,the essentialpoint being
that the fields at short distancesfrom the source,the nearfields, arealwaysquasistatic.For phenomena
involving smallmoleculesplacedcloseto metalsurfaces,this will thereforebe auseful approximation.

Fromthe inhomogeneousMaxwell equations,i.e., Gauss’slaw andAmpere’slaw, oneseesthat for c
large, D, and thereforeE, will be of zerothorder in c1, while B will be of first order.Keepingthis in
mind, the zeroth-orderquasistaticequationsare obtained by formally setting c = in Maxwell’s
equations(2.1). The result is

curl E = 0, div D = 4lTp (quasistatic). (2.34)

In nextorder the terms of order c1 arekept in Ampere’slaw, and the magneticfield is determined
from

div B = 0, curl B = ~ (i + ~ (quasistatic), (2.35)

in which it is understoodthat D(r, t) is the solutionof the zeroth-orderequations.Stoppingat thispoint,
eqs. (2.34) and (2.35) determinethe quasistaticfields. The quasistaticelectric field is just the in-
stantaneousCoulombfield due to the given chargedistributionsp(r, t), while the quasistaticmagnetic
field is the instantaneousBiot—Savart field arisingfrom the given current distribution j(r, t) together
with the displacementcurrent arisingfrom the quasistaticelectric field.

The quasistaticapproximationis appropriatein such a variety of physicalsituationsthat it is difficult
to state in utmost generality the conditions of validity. The most important physical phenomenon
neglectedis radiation. The quasistaticfields areinstantaneousas opposedto the retardedfields, and
without retardationthereis no radiation.Even in a radiating system,however,the nearfields in the
neighborhoodof the systemare quasistaticand can be evaluatedwith the neglectof retardation.In
general,therefore,the quasistaticapproximationis valid at distancesfrom the sourcesmall compared
with the wavelengthof emitted radiation.To be morespecific, for a confinedcharge—currentsystemin
vacuum,varying harmonicallyin time with frequency to, the fields arequasistaticat distancesr ‘~ c/to.

The reflection coefficients in quasistaticapproximationareparticularly simple.First of all, thereare
no S-polarizedwaves,aswe seefrom the fact that for suchwavesthe ratio of B to E as given by (2.17)
is of order c, not c’ asrequiredby thequasistaticapproximation.In fact the S-polarizedwavesemitted
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by a sourceare important only in the radiation zone, far from the source.In the nearzoneonly the
P-polarizedwavesare significant. The form of theseP-polarizedwavesis given by (2.16) in which we
replaceq1 by its quasistaticlimit,

qt—*ip (C—~cc). (2.36)

Thus the quasistaticelectricand magneticfields in the local mediumabovethe surfacehavethe form

E(r) = — -~- Bp[(i + i13) ej~z+ r~’2(~— i13) e’~]exp(ip .

B(r) = B~iX ft[ePz + r~2e~~]exp(ip . p), z >0. (2.37)

If the medium below the surface,medium 2, is local, we find the quasistaticform of the reflection
coefficient from (2.6) by replacingq1 andq2 by ip. Thus

r~2= (e~— ei)/fr2+ Et) (local) . (2.38)

Note that in the quasistaticapproximation r~2,given in (2.7) vanishes.For the SCIB model the
quasistaticreflection coefficient is given by (2.00) with qt —~ ip andwith Z~’given by thelimit asc —~ of
(2.26).The result is

r~2= [i - Ft Jdq k
2e~(k, )]/[1 + E~~ k2e~(k,~)]~SCIB (2.39)

with, as before,k2 = p2 + q2 in the integrals.
We havestatedtheseresultsas arisingfrom c —* ~ in (2.16).An alternativeway of reachingthesame

resultsis to takep ~‘ to/c. Thuslargep correspondsto quasistaticbehavior.This is not surprisingsince
largep correspondsto smalldistances.

2.3. Thequantuminfinite barrier model

In this section we consideran ideal quantumgas of electronsfilling a half-spacewith an infinite
potentialbarrierat the surface.We assumethat the backgrounddielectricconstantis unity andthat the
electroncollision frequencyis vanishinglysmall. We derive the linear responseof thissystemto electric
fields in the quasistaticapproximation.The resultis the so-calledquantuminfinite barrier (QIB) model.
This model was first discussedby Beck and Celli [14] and more recently by Perssonand Persson[15]
whocall it the IBM model, andby Metiu andcoworkers[16],whocall it ajellium modelwith an infinite
barrier. We repeatthe discussionherewith a slightly different formalism for a numberof reasons:The
discussionwill allow us to exhibit the relation betweenthe QIB and the SCIB models,to makeclear
how we numerically evaluatethe results,andto correct a numberof misprintswhich haveappearedin
the subsequentliterature.

Thequasistaticreflection coefficient for this modelcan beexpressedin termsof the electricpotential
and its derivativejust below the surface.To see this we expressthe electric field in the electrongas in
termsof a potentialof the form
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V(r, t) = V(z) exp[i(p . p — tot)]. (2.40)

Thus

E(r, t) = —grad V= —[ipV(z)+iV’(z)] exp[i(p ~p—tot)], (2.41)

whereV’ = dV/dz. The componentsof the electricfield parallel to the surfaceare continuous,therefore
• E given by (2.37) and(2.41) mustbe equal,so that

pV(0) = —(Cp/toe1)Bp(i— r~). (2.42)

Thecomponentof the electricdisplacementperpendicularto the interfaceis continuous.Justabovethe
surface,D = r1E, while justbelow,D = E, sincetheelectrondensityvanishesattheinfinite barrier.Hence,

{1 . E}inside = Et{~ E}outside . (2.43)

Using (2.41)and (2.37)this gives

V’(O) = (cp/to)Bp(1+ r~2). (2.44)

Dividing this equationby (2.42)and solvingthe resultingequationfor r~2we find

p leipV(0)/V’(O) 245

r12—1+ eipV(O)/V’(O) ( . )
which is our desiredexpression.

We seethereforethat the reflection coefficient can be determinedif the potentialwithin theelectron
gas is known. To get an equationfor V(r, t), we use in the third Maxwell equation(2.1) the defining
relation

DE+4irP, (2.46)

whereP is the polarization.PuttingE = —grad V, we get

V
2V= —4iT(p +Pjnd), (2.47)

wherep~fld(r,t) = —div P is the inducedchargedensityof the electrongas. This will be an equationfor
V(r, 1), if we can expressPind in termsof V, which we do below for an independent-particlemodel of
the electrongas.t

The quantumequationof motion for the one-particledensitymatrix is~

tThe independentparticlemodel is variouslycalled theself-consistentfield methodby Kittel [17]or therandomphaseapproximationby Pines
[18].A good introductionto themethodswe employ is ref. [17]ch. 6.

~We use thesamesymbol for thedensitymatrix, thechargedensity in Maxwell’s equations,andthe magnitudeof p. This is theCustomand
which is meantshouldbe clear from thecontext.
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ih = [H0—eV(r, t), p], (2.48)

whereH0 is the Hamiltonian for a free electronconfinedto the lower half-spaceby an infinite potential
barrier

H0=_~V2+{~~ ~. (2.49)

In discussingthis equationwe shall needthe eigenstatesof H0. Theseare

~skl,k,(r) = O(—z)exp(ik11 - p) sin k~z, (2.50)

wherer = p + zz
1 and0 is theHeavisidefunction(equalto unity forpositiveargumentandzerofor negative

argument).Here ~ • = 0 andk~> 0. The energyeigenvaluesare

HotIIkI
1k~= ~(k1~+k~i)I/Jk11Ac,, ~(k)= h

2k2/2m. (2.51)

The orthogonality relationfor thesestatesis

k~,~ k;) f dp J dzexp[i(k~— ku- p] sin k
2zsin k~z

= 2ir
38(k

11 — k~)8(k~— k~), (2.52)

andthe completenessrelation is

dk11 Jdkz ~ k~(r)~Jkk,(r)* = 8(r— r’)O(—z). (2.53)

The traceof an operatorC is

Tr{U} = ~ Jdk1 Jdk2~’~11k,, C~k11,k,) (2.54)

Another formulawe shall useis the identity

exp(ip P)t/1k11.k,= t/Jkl±pk,. (2.55)

In the absenceof the electricpotential V, the solutionof (2.48)is the equilibriumdensitymatrix

Po [exp{—(Ho—4)/k~T}+1]1, (2.56)
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where ~ is the Fermi energy, T is the temperature,and kB is the Boltzmann constant, The

correspondingelectrondensityis given by

n(r’) = 2Tr{5(r — r’)po}, (2.57)

wherethe factor2 takesaccountof the spin degeneracy.Using (2.54)this becomes

n(r) = -~ Jdk11 Jdk~f(~)l~PkII.k,(T)~, (2.58)

where~ = ~‘(k1~+ k~I), and

= {exp[(~’ — 4)/k~T]+ 1}_1 (2.59)

is the Fermi function. When kBT‘~ ~ the Fermifunction can be approximatedby its zerotemperature
or degeneratelimit

f(~)=0(~’p—~),kBT~~~F. (2.60)

In this limit the integral (2.58)is elementary.Using (2.50)we find

n(r) = ~ + 3 cos2k~z]0~~ (2.61)

wherekF= ((2m~p)
1”2)/his the Fermi wavevectorand

no=k~/3ir2 (2.62)

is the equilibrium densityof an infinite electrongas.In fig. 2 we show n, as given by (2.61),as a function

— —— —— — no

I I I I ______

-8 -6 -4 -2 0

kF Z

Fig. 2. Electron density profiles near the surfacefor the QIB (solid) and SCIB (dashed)models.
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of the depthbelow the surface.This figure showsclearly the differencebetweenthisQIB modeland the
correspondingSCIB model, for which n would be equalto the constantn0 all the way to the surface,
whereit would vanish abruptly. Probablythe most significant aspectof this difference is that for the
QIB model the densityvanishescontinuously.Probablyless significant are the Friedel oscillationsof n
as it approachesn0 in the interior of the metal. Fromthe figure we alsoconcludethat in comparingthe
two models,we shouldprobably takethe barrier for the SCIB modelsomewhatinside that for the QIB
modelat, for example,the half-densitypoint.

After thesepreliminaries,we return to the problem posed above: solving (2.48) to expressthe
inducedchargedensity in termsof V. We do thisby seekinga perturbationsolution of the form

p(t) p0+ ~ip e~~°’
t, (2.63)

wherePo is theequilibrium densitymatrix (2.56) and~p is the first-orderterm in V. Puttingthis in (2.48)
and keepingonly first-ordertermswe find

hw ~ip— [H
0,~p] = —e[ V(z) exp(ip p),po], (2.64)

wherewe haveused(2.40).We form thematrix elementsof this equationwith respectto the eigenstates
(2.50), using(2.51) and(2.55), to find

(hw + ~ — ~“)(~‘k1, k, ~JPt/Jk11,k,) = —e[f(~)— f(~”)]~’a1,k, V(z)i/i~~1+~k,/ , (2.65)

where ~ = ~‘(k11+~ ~“ = ~(k1j+k~i), and f(~’)is the Fermi function (2.60). The electron density

variation is ~n(r, t) = ~in(r)e”°,whereas in (2.57),
~n(r’) = 2 Tr{~(r— r’) ~p}

= (1/2~6)J dk~1J dk~Jdk~J dk~~, k,(r )~k1,k;(r )(~k1,k, ~P~’ki.k,), (2.66)

in whichwe haveusedthe completenessrelation(2.53). Solving (2.65) for the matrix elementof ~p,with
the understandingthat to hasa smallpositiveimaginarypart,weput the result in this last expressionto
get

~n(r) = - ~ J dk11 J dk~Jdk~J dk~ (~k1ik~,V(z)~~~1+~k,)~ki,k,(r)~k1,k;(r). (2.67)

Using the form (2.50)of the eigenstates,wesee that

(~‘k~.k, V(z)~~+Pk,) = (2~)
2~(ku— k

11 — p) J dz’ sin k~z’sin k,z’ V(z’). (2.68)

Puttingthis in (2.67) andidentifying the inducedchargedensityas Pind = —e ~n,we can write



G.W. Ford and W.H. Weber, Electromagnetic interactions of molecules with metal surfaces 211

pI~d(r,t) = exp[i(p p — tot)] J dz’ g(z, z’)V(z’), (2.69)

where

g(z, z’) = 2e Jdk~Jdk~Jdk~ ~ sin k~zsin k~zsin k~z’sin k~z’ (2.70)

in which ~ = ~‘(k11+k~i), g”= ~(k11+p+k’7.I). The relation (2.69) is the one we seek,expressingthe
inducedchargedensityin termsof V.

When (2.69) is put in (2.47)we get, using(2.40)and the fact that the chargedensityp is zeroin the
electrongas,

V’(z) — p
2V(z)+ 4~J dz’ g(z, z’)V(z’) = 0, (2.71)

which is a homogeneousintegro-differentialequationfor V(z). We are to solve this in the region
—c’~< z <0 with the boundarycondition V(—co)= 0 and V’(O) given. Then the reflection coefficient is
given by (2.45).

Thereareseveralwaysto go aboutsolving thisequation;one of the moreefficient is to introducethe
Fouriercosinetransformof V,t

J dz cosqzV(z), V(z)= (2/n)Jdq cosqzv(q). (2.72)

Multiplying (2.71) by cosqz andintegratingwe get

(q2 + p2)v(q) - 41TJ dq’ F(q, q’)v(q’) = V’(O), (2.73)

wherethe term on the right comesfrom integratingthe first term in (2.71)twice by parts, andwhere

E(q,q’) = (2/n) J dz J dz’ g(z,z’) cosqz cosq’z’. (2.74)

Puttingthe expression(2.70) for g(z, z’) in this integrand,we can exchangethe orderof integrationand

f This methodis equivalentto that of ref. [15].
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performthe z and z’ integrals.Before doing this, however,notethat the integrandof (2.70)is an even
function of k~andof k~,so we mayextendthoseintegralsover thefull range—~ to ~ anddivide by 4.
Puttingthe resultingexpressionin (2.74) andusingthe result

(4/n) J dzcosqz sink~zsink~z= 6(q+ k~- k~)+ 6(q - k~+ k~)

-~ -6(q+k,+k~)-6(q-k2-k~), (2.75)

we get

r(q~q’)=~JdkJ dk~J ~ [6(q+ k, - k~)+6(q-k~+ k~)-6(q+ k~+k~)

— 6(q— k~— k~)][6(q’ + k, — k~)+ 6(q’ — k~+ k~)— S(q’ + k~+ k~)—
8(q’ — k~— k~)].

(2.76)

When the factorsin squarebracketsare multiplied, we get 16 productsof 6-functions,four of which
may be droppedbecauseq andq’ are positive. By changingthe sign of k~or k~in the integration,the
remainingproductscan be arrangedas a group of four, eachof the form

8(q+ k, — k)6(q’ + k~— k~)= 6(q— q’)6(q + k, — k~), (2.77)

a secondgroupof four of the form

6(q — — k~)6(q’— k, + k~)= ~6(k~— ~(q + q’))3(k~— ~(q — q’)), (2.78)

anda third groupof four of the sameform as thesecondbut with k~andk~interchanged.Thereforewe
can write

T(q,q’) = G(K,w)8(q’ — q) — (1/4ir)S(q,q’), (2.79)

where

G(K, to) = ~ Jdk~J dk~~ ~‘) (2.80)

in which ~ = ~(k) and ~‘ = ~(k + K) with k = k
11+ k,1 andK= p + qi, andwhere

S(q,q’) = Jdk11 J dk~J dk~

x [o(k, — ~(q + q’))6(k~— ~(q— q’)) + 6(k, — ~(q— q’))3(k~— ~(q+ q’))] , (2.81)

in which ~ = ~‘(k11+ k~I)and ~‘ = ~‘(k11+ p + k~z~).
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The quantity G(K, to) is the Lindhard responsefunction correspondingto a plane wave with
wavevectorK in an infinite electrongas.With f(~’)given by (2.60), the integral(2.80) is familiar [9, 18],
andwe can write

G(K, to) = —(3to~/4irv~)f�(z, u), (2.82)

where f�(z,u) is the longitudinal Lindhard function (2.32), VF = hkFlm is the Fermi velocity, tot, =

(4irnoe2lm)”2 is theplasmafrequency,andthe dimensionlessvariablesu andz are given by (2.31)with
v—*04.The integrationin (2.81)is alsoelementaryandwe can write

S(q, q’) = 32toP
2[{[(2kFto/VF + p

2 - qq’)2 - 4p2(k~- ~(q+ q’)2)]112

VF FP

— [(2kFw/vF— p2 + qq’)2— 4p2(k~— ~(q + q’)2)]”2 — 2(p2— qq’)}O(kF— ~(q+ q’))

+ {[(2kFw/vF + p2 + qq’)2 — 4p2(k~— ~(q— q’)2)]”2

— [(2kFto/vF— p2 — qq’)2— 4p2(k~— 1(q — q’)2)]112 — 2(p2+ qq’)}O(kF — — q’~)]. (2.83)

In this expressionthesquareroots are to be chosenon thebranchwith positiveimaginarypart.Here,as
throughoutthis discussion,to is to havea small (infinitesimal)positiveimaginary part. Note, incident-
ally, that S(q,q’) = S(q’, q), andthat

Jdq’ S(q,q’) = 4irG(K, to), (2.84)

which is a consequenceof the fact that the inducedchargedensityvanishesat the surface.
Putting(2.79) in (2.73) we get

[K2- 41TG(K,w)]v(q) + J dq’ S(q,q’)v(q’) = V’(0), (2.85)

whereK2 = p2 + q2. With G andS given by the explicit expressions(2.82)and(2.83), thisis an integral
equationfor v(q). The reflection coefficient is given in terms of the solutionof this equationby (2.47)
with

V(0)=(217r)Jdqv(q). (2.86)

We havesolvedthis equationnumericallyby iteration.The initial, or beginning,iterate is obtainedby
droppingthe integral in (2.85) to get

v~°~(q)= [K2— 4~G(K,w)]’ V’(O). (2.87)
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The nth iterateis then given by

v~(q)= [K2— 4~G(K,~)]~t [V’(o) — f dq’ S(q,q~)v~1)(q~)]. (2.88)

Typically we find convergenceafter 5—10 iterations.We then form V(0) by numericalintegration of
(2.86)andform the reflection coefficient (2.45). In this connectionwe shouldpoint out for the benefitof
anyonerepeatingthese calculations that the numerical integration over S is delicate, since the
expression(2.83) hassharpstructurecorrespondingto the branchpointsof the squareroots.

The initial iterate (2.87) correspondsexactlyto the SCIB model, as we see by putting v~°~in (2.86)
and forming the reflection coefficient with (2.45). The result is identical to the quasistaticSCIB result
(2.39), providingwe put 8~= 1 andmakethe connection

ee(K, to) = I — 4irG(K, w)/K2, (2.89)

which with (2.80)is identicalto s
1 given by (2.30)whenEb = 1 and i.’ -~ 0~.Thus the SCIB model,for the

case in which we neglect electron scatteringand the bound-electroncontribution to the dielectric
constant,is obtainedby droppingthe integral term in (2.85).

In fig. 3 we show the real and imaginary parts of the quasistaticreflection coefficient plotted as

/ S’.. lm(r~)

0.04 - / N (hI -

I’
p/

2kF

Fig. 3. Quasistaticreflection coefficient for a free electrongaswith hw
5= 10.8eVat hw = 1.96eVcalculatedfor theQIB (solid) and SCIB (dashed)

models.



G. W. Ford and W.H. Weber, Electromagnetic interactions of molecules with metal surfaces 215

functionsof p, the componentof the wavevectorparallelto the interface.The solid curvescorrespond
to the QIB model,the dashedcurvesto the SCIB model.In both instancesthe parameterschosenwere
thoseappropriateto Cuin the visible region: hto~,= 10.8eV, ~F = 7.0eV, hto = 1.96eV, and, of course,

= 1, ii = 0. The most obviousconclusionfrom thesenumerical results is that the two modelsgive
qualitatively similar predictions.Quantitativelyboth the real andimaginary partsof r” aresignificantly
smallerin the QIB model.

2.4. Reflectionin the long-wavelengthlimit

In a considerablebody of work Feibelman [19—22]has consideredthe reflection from a metal
interface in the long-wavelengthlimit and applied the results to a numberof problems,notably the
problem of photoemissionnear the plasma frequency[20], and, of interestto us, the problem of the
imagefield at an atom nearthe interface[21].In our view the long-wavelengthlimit is not appropriate
in problemsinvolving moleculesnearthe interfacewherewavelengthsof the order of the molecular
spacingor the molecularsize are important. Neverthelesswe review in this section the methodsof
Feibelmanfor two reasons:They havebeensuccessfulwhenappliedto appropriateproblems,e.g., the
photoemissionproblem, and they havebeenapplied to problemsof moleculesnear the surface.Our
aim in this sectionwill be first to give a simple expositionof the methodsandthen to relate them with
the methodsdiscussedearlier in the chapter.

First we should explainwhat is meant by the long-wavelengthlimit. This is the limit in which well
within the metal the dielectric relation is of the local form. From our considerationsearlier in this
chapter,in particular from an inspection of the expressions(2.30) for the quantuminfinite medium
dielectric constants,we know that the local approximationrequiresfirst that the wavelengthbe long
comparedwith the Fermi wavelength,or

k42kF, (2.90)

andsecondthat the phasevelocity of the wavesbe largecomparedwith the Fermi velocity, or

k<<to/vF. (2.91)

Sinceto/2kFvF= hw/4~~is in generalsmall, the latter is theoperativerequirementin our considerations.
Undertheseconditionsthe dielectricrelationin the region of the metalbelow a narrowsurfaceregion
(of thicknesssomemultiple of the Fermi wavelength)will be of the local form

D(r) = e
2(to)E(r), —z~ VF/to. (2.92)

On the otherhand,within the surfaceregion the dielectricrelationwill be nonlocal,of a form that for
the moment will not be specified.

Now this limit, long-wavelengthand a thin-surfaceregion, is exactly that for which the Fresnel
formulas(2.6) and(2.8) shouldbe a very goodapproximation.And indeedtheyare, the correctionsare
small and in generalnegligible.An exceptionis near the plasmaedge(to wv), where excitation of
longitudinal plasma wavesin the metal is significant, but even then the correctionsto the Fresnel
formulasare small, althoughexperimentallyimportant [20]. The object, therefore,will be to calculate
the first-ordercorrectionsto the Fresnelformulasin thislong-wavelengthlimit. Thenominal expansion
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parameterwill be the ratio of the thicknessof the surfaceregion to the wavelength.The startingpoint
of our calculation will be the formulation in terms of surfaceimpedances,introducedin section2.1.
Recall that the surfaceimpedancescan be calculatedin termsof thesolutionsof theMaxwell equations
within the metal alone,with appropriateboundaryconditionsat the metalsurface.

Considerfirst the S-polarizedcase,for which within the metal

E(r) = E~(z)iX j3 exp(ip ‘p), D(r) = D~(z)ix j3 exp(ip -

B(r) = [B~(z),3+ B~(z)z~]exp(ip - p). (2.93)

The Maxwell equations(2.2) then become

dE~/dz= —i(wIc)B~, dB~/dz= —i(C/w)[(w
2/C2)D~— p2Ev], (2.94)

and

B~= (cp/to)E~. (2.95)

The surfaceimpedancefor S-polarizedwaves,as given in (2.19), is

= (41T/c)E~(0)/B~(0). (2.96)

To form this quantity the procedureis to solve eqs. (2.94) for B~(z)within the metal (_ce<z <0) and
with the boundaryconditionsthat E~(0)is given andthat B~(z)vanishesasz —~ —~. We thenform (2.96)
with B~(0).In the local approximationwhere(2.92) holds throughoutthe metal, this solution is trivial.
The result is

E~(z)= E~(0)exp(—iq
2z), B~(z)= (cq2Ito)E~(0)exp(—iq2z) (local), (2.97)

whereq2 = (E2w
2/C2— p2)t12 with Im q

2 > 0 as in (2.8). Forming(2.96) we find

Zs= 4irw/c
2q

2 (local), (2.98)

whichwhenput in (2.20) gives the Fresnelformula (2.7) for the S-polarizedreflection coefficient.
To find the first-ordercorrectionto this local resultwe first integrateeqs.(2.94) to write

E~(0)=-i(to/c) J dzB~(z), B~(0)=-i(C/w) J dz [(to
2/C2)D~(z)-p2E~(z)]. (2.99)

We next multiply the first of theseequationsby Cq
2/w and subtractit from the second.After a little

rearrangementusing (2.8), wecan write the result in the form

B~(0)=~Ey(0)—i~Jdz [D~(z)—E2Ey(z)]+iq2f dz [B~(z)~~E~(z)]. (2.100)
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Here the first term is the local result, as we see from (2.97), so that in the long-wavelengthlimit the
integralsrepresentcorrectionsto this result. Moreover,the factorsmultiplying theseintegralsare both
inversely proportional to the wavelength,so that the correctionsto first order in the ratio of surface
thicknessto wavelengthareobtainedby evaluatingtheintegralsin the strictly infinite wavelengthlimit.t
Now in this limit it is clear from eqs. (2.94) that E~andB~are uniform,

E~(z)=E~(0), B~(z)=B~(0)=(cq2Ito)E~(0), (w/c—~0). (2.101)

This meansthat in the limit the secondintegral in (2.100)vanishessincethe integrandis identically zero.
The first integral doesnot vanish since the dielectricdisplacementcorrespondingto a uniform (but
oscillating at frequencyto) electric field is not uniform in the surfaceregion.We are thereforeled,
following Feibelman,to introducethe quantity~

d11(to)= (Ft - E2)E~(O)J dz[~~(z)- E2E~(O)], (2.102)

where.l
5~(z)is the electricdisplacementcorrespondingto a uniform field E~(0)directedparallelto the

interface.With thiswe seethereforethat throughfirst order (2.100)can be written

B~(0)= [(cq
2/w)+ i(to/c)(s2— e,)d~~]E~(O), (2.103)

and, therefore,putting this in (2.96)and keepingterms throughfirst order

Zs = (4lTtoIc
2q2)[1 — i(to2/c2q2)(e

2— E,)dj1] . (2.104)

Considernext the P-polarizedcase,for which within the metal

E(r) = [E~(z)j3+ E~(z)i]exp(ip - p), B(r) = B~(z)~x ~iexp(ip - p)

D(r) = [D~(z)j3+ D~(z)~]exp(ip . p). (2.105)

The Maxwell equations(2.2) then become

dE~Idz= —i(to
2/c2p)D~+ ipE~, dD~Idz= —ipD~, (2.106)

and

B~= —(to/cp)D~. (2.107)

Thesurfaceimpedancefor P-polarizedwaves, as given by (2.19), is

tin the infinite-wavelengthlimit thequantitiesadc,q~,and p areall takenasinversely proportionalto thewavelength and therefore go to zero,
while ratiossuchascq2/w are finite.

~Becausewe choosethemetal to occupy the region of negativez with theplane z= 0 being a plane abovewhich all metal properties (e.g.
electron density) vanish, our d

11 is not exactlythat of Feibelman,but differs by an addedrealconstant.



218 G.W. Ford and W.H. Weber,Electromagnetic interactions of molecules with metal surfaces

= — 4ir E~(0)= ±?rl:~E~(0) ~2108c B~(0) to D,(0)~

In a mannersimilar to that in the S-polarizedcasewe form this quantity by solving eqs. (2.106) for
E~(z)in the region —~ < z <0 and with the boundaryconditions that D~(0)is given and that E~(z)
vanishesas z —* —~. We then form (2.108)with E~(0).Again, we do thisfirst in the local approximation,
wherethe solution is

D~(z)= D,(0)exp(iq2z), E~(z)= (q2/pE2)D~(0)exp(—iq2z) (local), (2.109)

whereagainq2 is given by (2.8). Formingthe surfaceimpedancewe find

Z~’= 4~q2/toE2(local). (2.109a)

Again, proceedingas in the S-polarizedcase,to find the first-ordercorrectionsto this local result, we
first integrateeqs. (2.106)to obtain

0

E~(0)=~-J dz [~D~(z)_p2E~(z)], D,(0)=—ip J dzD~(z). (2.110)

Next multiply the secondof theseequationsby q2/pe2andsubtractit from the first. The result can be
rearrangedinto the form

E~(0)=~D,(0)-ipJ dz [
1D~(z)-E~(z)]

I dz[D~(z)—F
2E~(z)]+iq2 J dz [E~(z)—~D~(z)]. (2.111)F2

The factors multiplying the integrals in these expressionsare each inversely proportional to the
wavelength, while the first term correspondsto the Fresnel, or infinite wavelength, result. The
first-order correctionsto this result are thereforeobtainedby evaluatingthe integralsin the infinite
wavelengthlimit. In this limit, as we seefrom eqs. (2.106),E~andD~are uniform

E~(z)=E~(0)=(q2/pe2)D~(0), D~(z)=D~(0). (2.112)

Here we see the strategy of the rearrangementresulting in (2.111), since there the third integral
vanishesin the limit, its integrandbeing identically zero. The second integral is the same as the
correspondingintegral in the S-polarizedcase,therebeingno differencebetweenx andy in the infinite
wavelengthlimit. We can thereforeexpressit in termsof d11 given by (2.101) with x replacedby y. The
first integral in (2.111) is new. We are therefore led, again following Feibelman,to introduce the
quantity
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d±(to)=(lie2- 1/ei)D2(0)J dz[
1D~(o)—E~(z)]~ (2.113)

whereE~(z)is the electricfield correspondingto a uniform electricdisplacementD~(0).Collectingthese
resultswe seethat throughfirst order (2.111) can be written

Ex(o)~Dz(o)+ip(i_i)d±Dz(o)_iq
2(1_~)diiEx(0). (2.114)ps2 E~ F2 F2

Solving for E~(0)and putting the result in (2.107) we get

= ~ N + ~ e2p
2d±—e,g2

2d11] (2.115)
toe2 L \E, e21 q2 j

whereagainwe havekeptonly first-orderterms.
The S- and P-polarizedreflection coefficientsare now given by (2.20) with the surfaceimpedances

given by (2.104) and(2.115). The result throughfirst ordercan be written

r~2=g,- g2(1+ 2iq,d~1), r~=q,e2- q2e1(i+ 2iq, e,g~d~—E2P
2d±) (2.116)

qt+q
2 q,e2+q2s, e1q2—e2p

As an illustrationconsiderthe verysimplemodel in which onetakesthedielectricrelationto belocal
throughoutthemetalbut with a different,anisotropic,form in a layerof thicknessd atthe surface.That
is,

Dr = Je~[E(r)—2-E(r)~]+e~52-E(r)~, —d<z<0, ~2117
te2E(r), —~<z<-d.

According to (2.102),to form d1~we areto solve for the electricdisplacementD~(z)correspondingto a
uniform electric field E~(0)parallelto the interface (xy plane).The solution is trivial;

D Je~~E~(0),—d<z<0, 2118

~(z) te2E~(0), —co<z<-d. (. )

With this (2.102)becomes

d11 = [(e2— e~~)/(e2— e,)]d. (2.119)

According to (2.113),to form d1 we areto solve for the electric field E~(z)correspondingto a uniform
electric displacementperpendicularto the interface.Again the solution is trivial;

E( )=J(1~~~(0)~-d<z<0, 2120

z I(1/e2)D~(0), -cc<z<—d. L )

With this (2.113)becomes
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d~= [(1/c2— 1/s~2)/(1/e2— 1/ct)]d. (2.121)

Note that if we choosec~,= = £2, correspondingto a local metal with no surfacelayer, then
d11 = d1 = 0 and from (2.116) we recover the Fresnel formulas. On the other hand, if we choose

= = e,, correspondingalsoto a local metal with no surfacelayer, but with the surfacenow at
z = —d, then d1~= d~= d. Again from (2.116) we recover the Fresnel formulas, but with the first
approximationto the phaseshift of the reflectedwave due to propagationfrom z = 0 to z = —d and
back.From theseresultswe seethat d0 and d1 can be interpretedaseffectivethicknessesof the surface
region.

Next considertheSCIB andQIB models.Herewe makethe quasistaticapproximation,for which the
definitions (2.102) and(2.113)of d11 andd1 areunchanged,but in theformulas(2.104) and(2.115) for the
surfaceimpedancesand in theformulas(2.116)for the reflection coefficientswe makethe replacements
qt —~ ip and q2—* ip. In this approximationthe S-polarizedreflection coefficient vanishes,as expected,
andthe P-polarizedreflection coefficientbecomes

r~=E2Et (1_2~etdii+e2d1) (2.122)
E2+Et Ft+E2

To form d11 we are to calculateD~(z)correspondingto a uniform electric field E~(0)directedparallel to
theinterfaceandoscillatingat frequencyto. For thesemodelsthe electrondensityn(z) is unchangedby
such a field, so the solution is

D~(z)= (1 — 4~rn(z)e
2/mto2)E~(0). (2.123)

The dielectricconstantdeepwithin the metal is (Fb = 1, ~‘ = 0)

£2 = 1 — 4~-noe2/mto2= 1— to~/to2, (2.124)

wheren
0 = n(—cx~)is the asymptoticelectrondensity.Puttingtheseresultsin (2.102)we find

d11= e21 f dzfbfl~. (2.125)
E2Ft /10

For the SCIB model n(z) = n0 throughout the metal andd~= 0. For the QIB model n(z) is given by
(2.61) and

d11 = [(F2 — 1)/(c2— Ft)]3lrI8kF (QIB). (2.126)

Thus, for thesemodels,aside from the factor (e2— l)/(c2— c1), which is equal to unity if Ft = 1, the
quantity d11 is the ~‘depthof the jellium edge”, i.e., the depthat which a uniform positive background
chargedensityn0 would have to be terminatedin order to ensuretotal chargeneutrality.

Next considerthe calculationof d1 for the SCIB and QIB models.To form this quantity we are to
calculate E~(z)correspondingto a uniform electric displacementD,(0) directedperpendicularto the
interfaceand oscillatingat frequencyto. In the context of the discussionin section2.3, this meansthat
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for thesemodelswe areto calculate

E~(z)= — V’(z), (2.127)

with

D~(0)= E~(0)= — V’(O) (2.128)

given. Here V(z) is the potential correspondingto a uniform source in the xy plane, i.e., it is the
solutionof (2.71) with p = 0. Thus we can write (2.113) in the form

d1= (1/e2- 1/ei)f dz [I_ ~ (2.129)

In order to evaluatethis expressionin terms of the numericalresultsdescribedin section 2.3, it is
convenientto expressit in termsof the cosinetransformof V. Thus,from (2.72), we write

V’(z) = — ~- J dqqv(q)sin qz. (2.130)

We put thisin the secondterm in the integrandof (2.129)while in the first term we use the identity

~jdq5inq~=_1, z<0, (2.131)

to write

d1 = 1/c2 lies J dz ~ Jdq [- ~ + ~ sinqz. (2.132)

Interchangingthe orderof integrationandperformingthe z integrationwe get

d — 1 2
1d i(ig2v(q) 2133‘l/e

2-1/esi~J ~q2\~ V’(0) (. )

This is to be evaluatedwith v(q) the solutionof (2.85) in whichp = 0. Note that for this solution

limq
2v(q)= V’(0)1e

2, (2.134)

with e2 the bulk dielectric constant(2.124).The integral (2.133) is thereforeconvergent.For the SCIB
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model we use (2.87),which with (2.89)gives the result

d1 = 1/F2~ he,~Jdq-~(J~~c1(q, ~ (SCIB), (2.135)

whereFe is the longitudinal dielectricconstant(2.30)specializedto Eh = 1 and t’ = 0. For theQIB model
we mustevaluate(2.132)with the numericalsolutionof (2.85).

Numerical resultsof thesecalculationsfor the example of a free electron gaswith electron density
appropriateto Cu in the visible region areshown in table 1. On first inspectionthe differencebetween
the two modelsis quite large. However,if we were to choosethe “surface”for the SCIB model to be at
the depthof the jellium edge,whichwould correspondto adding31r/8kF= 0.866A to both d11 andd1 for
that mode, the real partsare broughtinto very closeagreement.Therestill remainsa largediscrepancy
in the imaginary parts of d1, but this is also misleading. Referring to the equation (2.122) for the
reflection coefficient we seethat Im(d±)is proportionalto the slopeat the origin of Im(r”) shown in fig.
3. The slopesat the origin areindeedvery different for the two models,but this is true only over avery
narrow rangeof p, the slope for the QIB model quickly rises to be comparableto that for the SCIB
model. We concludeonceagain that the two models give qualitatively similar predictions,and that
quantitativelythereis little difference,given that the effective position of the surfaceis an adjustable
parameterin the SCIB model.

The fact that d~iand d1 are relatedonly to the slope at the origin of the reflection coefficient as a
function of p makes this whole discussionappearto be rather trivial, since for the SCIB and QIB
modelsit is no moredifficult to calculatethe whole curveas exemplifiedin fig. 3. Sucha conclusionis
misleading,however,since the calculationof d11 andd~can be carriedout for morerealistic modelsof
the electrondensitynearthe surface,modelsfor whichcalculationsof the sort describedin the previous
sectionwould be impracticable.The way this is doneis to replacethe infinite barrier potential in the
QIB Hamiltonian (2.49)by a moregeneralpotentialU(z) whichis largeandpositiveoutsidethemetal
andvanisheswell inside the metal,with a smoothtransitionbetween.The result in the eigenstates(2.50)
is to replacesin k,zwith jk,(z), thecorrespondingeigenfunction in theone-dimensionalpotential U(z),
normalizedso that well inside the metal~l~k,(Z)~ sin(k~z+ 3). (The possibleexistenceof boundstatesin
the potential U(z), correspondingto surface electronic states, is an additional complication.)The
discussionin the remainderof section2.3 goes through as before with the result that one obtainsthe
expression(2.70) for the linear responsefunction g(z, z’), but with the above replacement:sin k,z
~k,(Z). Calculationsbasedon a formalismequivalentto thisare reportedby Feibelmanin refs. [19—22].

Table 1
Numerical values of d1 and d1 for the
SCIB and QIB models, calculated for a
collisionless free electron gas with the

sameparameters as used in fig. 3

d~(A)

SCIB 0 0.680— 0.092i

QIB 0.866 1.500— 0.014i
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3. Molecular fluorescenceneara metal

In this chapterwe addressthe problem of the emissionof radiation by a molecule near a metal
surface.Our primary interestwill be in fluorescence,i.e., the decayof an excitedelectronicstateof a
molecule,but our resultswill be equally applicableto the final radiationstep in a Ramanor Rayleigh
scatteringprocess.The fluorescenceproblemhasbeenreviewedby Chanceet al. [23], andsomeof our
discussionwill repeattheirs. However, we will also cover two aspectsof the problem which require
furtherelucidation:theemissioninto surfaceplasmonsandotherguidedmodes,and the importanceof
specific mechanismssuch as interbandabsorption,electronscatteringloss, or electron—holeexcitations
in determiningthefluorescencedecayratewhen the moleculeis very closeto the metal.The last two of
thesemechanismscan only be describedaccuratelyusing a nonlocal responsefunction for the metal.

The presenceof a metal surfacecan markedly influencethe fluorescencepropertiesof a molecule
nearby,andthe natureof this influencedependson the distanced from the metal.At distancesof the
order of or slightly greater than the emission wavelength(d � l0~A), the emissionis primarily into
photons and the fluorescentlifetime exhibits an oscillatory behavior with d, which arises from an
interferencebetween the directly radiatedemission and that being reflected from the metal. This
phenomenonwas studiedin the earlyexperimentsby Drexhage[24,25] andwas discussedtheoretically
by several authors[26—29].At distancesof order d = 50—500A, i.e., much larger than atomic dimen-
sions but somewhatless than the wavelength, the fluorescing molecule couples strongly to the
propagatingsurfaceplasmonson the metal [30,31]. This decayinto surfaceplasmonshas beenobserved
directly in experimentswhich useprism or gratingcouplersto convertthesesurfacewavesinto photons
[32—36].At very small valuesof d (~l0A), nonradiativeprocessesdominatethe decayrate,and these
aredeterminedby the intrinsic loss mechanismsin the metal: interbandabsorption,electronscattering
losses, and electron—hole excitations. Which of these mechanismsis most important in a given
experimentdependsin detail upon the propertiesof the metalat the emissionfrequency.Only a few
experimentshaveprobedthe smalldistancerange[37,38].

The surfaceplasmonemission,althoughoften termed“nonradiative” since it is usually not directly
observable,is actually radiative in charactersinceno loss in the metal is requiredand the emissionis
into propagatingmodeswhich havewell-defineddispersionrelations.The sameis true of the emission
into othertypesof guidedmodeswhich occur in multilayeredstructures.

To describephotonandsurfaceplasmonemission,which dominateat largedistancesfrom themetal,
the full retardedsolutionsof Maxwell’s equationsare required,but the metal responsecan betreatedin
local approximation.On the other hand, to describethe decay processesoccurring at smalldistances
from the metal, the quasistaticelectromagneticfields can be used,but a nonlocalmetal responseis
required.

These fluorescencephenomenacan all be understoodin terms of a model of an oscillating point
dipole abovethe surface.This problemwas first discussedin the radio-frequencyregimeby Sommerfeld
[39,40] in the context of a radiating dipole abovethe conductingearth. Sommerfeld’ssolution was
extendedby Chanceet al. [23] andothers[26—31]for thepurposeof explainingthe optical fluorescence
experiments.Thesolutionsto thisproblemhaveusuallybeenobtainedby introducingthe Hertz vector
potential or by using dyadic Green’s functions [23]. In our discussionwe develop an alternative
approach,originally due to Weyl [41], in which the dipolar field is written as a superpositionof P- and
S-polarizedplanewavesandthe influenceof the metalsurfaceis describedby its planewavereflection
coefficients.This approachhasbeenusedby severalauthors[42—45].It hasthe advantageof separating
the calculationof the metal response,as describedby the reflection coefficients,from the restof the
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problem. It hasthe additionaladvantagethat the solutionsfor problemswith multiple interfacescan be
obtainedeasilyfrom the solution for a single interface.

3.1. Point dipole abovea semi-infinitemetal

In this section we derive a formula, expressedin terms of an integral involving the reflection
coefficients,for the powerdissipatedby an oscillating dipole abovea metalsurface.To do this we first
considera dipole in the mediumin the absenceof the metal.Then,by a simple modificationof the fields
in accordancewith the resultsof chapter2, we obtain the desiredformula for the power dissipatedin
the presenceof the metal.

Consideran oscillatingpoint dipole ~t e’”” placedat r = id with arbitrary orientationin an infinite
medium of real dielectricconstantc,. The powerdissipatedby this dipole is given by

~=to/2Im(JL*.E), (3.1)

whereE e~~0tis the electric field at the dipole producedby the dipole, i.e., by the current source

j(r, t) = —ito/2 e’”’58(r — id). (3.2)

To determineE we solve the Maxwell equations(2.2) with D = F
1E andthis currentsource.

We introduceFourier expansionsof the fields

E(r) = J dk exp(ik - r)Ek, B(r) = J dk exp(ik . r)Bk; (3.3)

theneqs. (2.2) can be written in the form

Bk=-~-kXEk, kXBk+El~Ek—~-~p.exp(—ik~d). (3.4)

Solving theseequationsfor the electric field amplitude,which is all we need,we find

—1 1 kx(kx1z)1Ek = 21T
2F, l~+ k2 — k~ j exp(—ik~d), (3.5)

wherek~=s,to2/c2.
When this result is put in (3.3) we obtainan integral expressionfor E(r). Although at this point we

are still dealingwith the problemof the dipole in an infinite medium,our aim is to usethe resultsin the
problem in the presenceof a metalsurface,which can be takento bethe xy plane.We thereforein the
k integrationin (3.3) write k= p + k~i.The electric field thenbecomes

E(r) = 2~e,Jdp exp(ip - p) J dk~f,L + k x
2(kx~z)}exp[ik~(z- d)], (3.6)
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wherewe havewritten r = p + zi andwhere

q1 = (k~— p
2)~2, Im(q

1) � 0. (3.7)

The k~integrationcan be doneusing contour integrationin the k~plane. The integrandin (3.6) has
polesat k~= ±q1.For z > d we completethe contourin the upperhalf-plane;the integral is 2iri times
the residueat k2 = q,. For z<d we completethe contour in the lower half-plane;the integral is —2iri
timesthe residueat k2 = —q,. Forz = d thereis an additional contributionto the integralfor the E field
equalto 21T6(z— d) timesthe limit as —* of the quantity in curly brackets.Theresult is

E(r) = ~~k~fdp exp(ip - p)~6(z— d)i - ~z2+ ~-~— k~x (k, x ~z)exp[iq,lz — dI]}~ (3.8)

where

k,=p+q1i(z—d)/Iz—dj. (3.9)

To evaluatethe dissipatedpowerweinsert (3.8) into (3.1). The singular6-functionin the electricfield
doesnot contributeto the dissipatedpowersince it correspondsto a real term in ,f’ - E. The remaining
terms are imaginary only for 0 ~p ~ k,, i.e., only in the radiation regime. Rememberingthat at the
dipole p= 0 and z = d, wefind after integratingover directionsof p

= ~ J dp2+~(k~+ q~]; (3.10)

wherewe haveintroducedj~ = i . ~z(and~ = — ~ Thep-integrationis now elementaryandwe
obtain the well-known Larmorformula for the powerradiatedby a dipole:

= ,zI
2e~’2to4/3c3. (3.11)

We now considerthe extensionof this result to the casewhen a metal(designatedmedium 2) is
presentin the region z<0. To find the electric field at the dipole we first decomposethe field (3.8) in
the region below the dipole into its P- and S-polarizedcomponents.This is accomplishedusing the
vector identity

—k
1 X (k,X ,L)= (pi+ qifi). ~z(pi+ q,~)+k~ix1 .~ziX1. (3.12)

Usingthis in (3.8) the field emittedfrom the dipole toward the metalcan be written

Edipole(Z <d) = ~—~-—- Jdp exp~~~i) {(pi + q1~)-~(pi + q1j3) + k~I x ft . ~ziX ft} exp[—iq,(z — d)],
‘7TE1 q,

(3.13)

wherewe haveused the subscript“dipole” to emphasizethat this is the downwardpropagatingpart of
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the field, comingfrom thedipole. The total field in theregion 0 < z <d must be this dipole field plus an
upwardpropagatingreflectedfield, with its componentschosenso that the total field is a superposition
of P- andS-polarizedwavesof the form (2.16)and(2.17), respectively.The first term in the bracketsis a
P-polarizedwave, the secondan S-polarizedwave.The total field in this region is therefore

= ~-~--— J dp exp[i(p - p + gid)] ~ . (pi + q,ft)[(pi + q,j3) exp(—iqtz)+ (pi — q,j3)r~2exp(iqtz)]
q,

+k~t.ixftixft[exp(—iq1z)+r~2exp(iq,z]}, 0<z<d. (3.14)

The power dissipatedby the dipole in the presenceof the metal can now be evaluatedby inserting
(3.14) for E in (3.1) (rememberingthat the singularpart of the dipole field gives no contributionto 2P).
After integratingover the directionsof p, we obtain

= ~- Re J dp P{,~p2[1+ r~exp(2iq,d)]+ ~k~[1 + r~2exp(2iq1d)]

+ ~ ~q~[1— r’,’2 exp(2iq,d)]}. (3.15)

Here p~andp~are, respectively,the componentsof ~ paralleland perpendicularto the surface.This
result, which is the main resultof this section,is the generalizationof the formula (3.10), to which it
reduceswhen the reflection coefficientsareset equalto zero.

The correspondingformula for the total power dissipatedby a magneticdipole m in the same
dielectric (nonniagnetic)mediumabovethe metal is obtainedby making the following replacementsin
(3.15): /.L—*m; r~’2—~r~2r~2—~r

1~’
2F~—*l.

3.2. Powerdissipatedspectrum

The powerdissipated(3.15)is expressedasan integralover the magnitudeof asurfacewave vectorp.
For purposesof discussionit is convenientto introducea quantity d~/dpdefinedas the p-space power
spectrum,writing

= J dp (d~Pidp). (3.16)

Different regions of this p integration in (3.23) can be identified with different power dissipation
channels. In this section we discuss the various contributions, showing that we can to a good
approximationwrite the powerdissipatedas a sum

= ~photon + ~sp + ~ (3.17)

where~~photon is the powerradiatedvia photons,~ via surfaceplasmons,and ~LSW that via what we
call lossysurfacewaves.

We show in fig. 4 the p-spacepowerspectrumat two differentdistancesfrom the metal for thecase
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Fig. 4. The p-spacepower spectrumat !Lw = 1.96eV for a I dipole in vacuumoutside a Ag surface calculatedusing the nonlocalSCIB model

(solid) and the local model (dashed).In (a) the dipole is 0.5 A from the surface, in (b) tt is 25 A away. The Ag parametersare given in the text.

of a dipole oriented normal to the surfaceandcalculatedfor two different modelsof the metal.The
parameterschosenapplyto Ag at hto = 1.96 eV. The solid curvesarecalculatedwith the nonlocalSCIB
model in which r~’2is given by (2.22)and (2.27) with the dielectricconstantsgiven by (2.31); the dashed
curvesare calculatedwith the local model in which r~2is given by (2.6). Both calculationsemploy the
same interbandterm Sb, plasmafrequencytop, andelectronscatteringrate v.1~

In the region 0 ~ p < k, thez-componentof the propagationvectorq~is real, which meansthe waves
in medium 1 are propagatingbulk waves. We thus assignthis part of the power spectrumto photon
emission

~photon = J dp (d~/dp). (3.18)

tThe determinationof themetalparametersis to someextentamatterof choice.In this casewehavechosento fit theopticaldatafor Ag in the
range450—700nm to obtain f,w1, = 9.33eV, hi’ = 0.058eV, and E~= 3.6 [461.Theremainingparametersweredeterminedassumingoneelectronper
atom andasphericalFermi surfacewith thefree-electronmass,giving kF = (3nir

2)’°= 1.2 x 10~cm1 and CF = hkF/m= 1.4 x 108 cm/s. Note that we
have fitted w~asindependent of kF and VF, while in the free electronmodel they are related.
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Just above the light line, p ~ k1, there is narrow peak in d/?P/dp which correspondsto surface
plasmonemission.The peakarisesfrom a pole in r~2at the complexsurfaceplasmon wavevectorPsp,
which, usingthe local approximation(2.6), is given by

Psp= (to/c)[Ftc2!(E, + 52)]. (3.19)

The power emitted into surfaceplasmonscan be determinedby expandingr~2in the vicinity of this
pole,

rj2(pz~~p5p)2E152 , (3.20)
Ft E2P Psp

and thenevaluatingthe polecontribution to (3.15).The result is

= ¶— Re{((~~’) (~a~— ~ exp(—2(—sl!E2)t/2pSpd)}. (3.21)

Near the surface plasmon pole p> k1 and qt = (k~— p

2)”2 is pure imaginary, correspondingto
evanescentsurfacewaves. This means the energy is trappedon the metal. However, the emission
processis still radiative in nature,since the energyis carried away by a wave propagatingalong the
surface.Moreover, no loss in the metal is requiredfor this processto occur. In a multilayeredstructure
severalguidedmodesmay exist in addition to, or insteadof, the surfaceplasmonmode discussedhere.
Eachguidedmode of such a structurewill producea pole in d~?/dpnearthe real p-axis. The power
emitted into each can be evaluated by determining the pole contribution to (3.15) in a manner
analogousto the aboveprocedurefor the surfaceplasmonpole.This will be shown in sections3.4 and
3.5 below.

Whenwe considerthe large-pregion of fig. 4 we seethereis a broadpeakin d~/dp.It is only in this
region that thereis a disparitybetweenthelocal andnonlocal results.On the otherhand, in thisregion
of large p the quasistaticapproximation is valid. The formula for the power dissipated in this
approximationcan be obtainedfrom (2.15) by settingq~= ip, as in (2.37), and r~

2= 0.

~LSw = dpp
2(ji~+ ~/L~) e2” Im(r~

2), (quasistatic). (3.22)

Here we have ascribedthe power dissipatedto iossy surface waves,since in the large-p region the
dissipationarisesfrom the imaginarypart of the metal responseandthe fieldswhich coupleto the metal
areevanescentwavesassociatedwith the nearfield of the dipole. The solid curvesin fig. 4 are well fit in
the regionp ~‘ k by d~/dpobtainedfrom (3.22)with r~given by (2.40),correspondingto the quasistatic
SCIB model. Similarly, the dashedcurves in fig. 4 are given quite accuratelyby using the local
quasistaticresultr~2= (e2 — e1)1fr2+ El). In thiscasethe integral in (3.22)can be evaluatedto obtain

= (to/8etd
3)(,a~ + ~/L ~)Im[(e

2 — E,)/(62+ e’)] (local, quasistatic). (3.23)

In the region 10k1Sp ~Sl0
3k

1 2kF of fig. 4 the nonlocal d~P/dpexceedsthe local by about an
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order of magnitude.This is a consequenceof the fact that the local calculation does not describe
electron—holeexcitation, which dominateselectronscatteringloss in the high-pregion.At evenlargerp

values,as seen in fig. 4(a), the nonlocal result has a sharp cutoff beyond which it falls orders of
magnitudebelow the local result. The cutoff correspondsto the upper edge of the bulk excitation
spectrum.The fact that beyondthe cutoff the nonlocalresult falls so dramaticallyis a consequenceof
screeningof the electronscatteringloss mechanism.At large wavevectorsthis mechanismbecomes
ineffective, dueto screening,as a meansof absorbingenergyfrom the electromagneticfields.

Thesimilarity of the appearanceof the solid anddashedcurvesin the region of largep is misleading.
One might be temptedto think that the local calculationdescribesthe effects of electron scattering
while the nonlocalcalculation describesin addition electron—holeexcitation. While this picture has
somevalidity atp ~ 2kF, at largervalueselectronscatteringis screenedandis very muchoverestimated
in a local calculation. The fact is that in the regions where the two calculationsdiffer the local
calculation is incorrect.On the otherhand, in the low-p region wherethe two calculationsagree,the
local calculation is obviouslyadequate.

Thereare,however,situationsfor which the region of validity of the local calculation is extended.
Oneis for a ratherpoorermetal,such as liquid Hg wherethe electronscatteringrateis about20 times
aslargeas thatin Ag. Thenthepowerdissipatedthroughelectronscatteringwill dominateandthe local
andnonlocalcalculationswill coincide until at very largep the nonlocalcalculationwill fall off faster
due to screening.Another situation would be for a transition metal such as Ni, for which the
bound-electrondielectric constantEb has a large imaginary part, due to interband absorption.If
interbandabsorptiondominates,then the local calculationwill be valid through very large p, there
being no screeningof Fb by the electrongas. Therewill, however,be nonlocaleffects in Fb itself at
extremelylargewavevector.

The form of the p-spacepowerspectrumin the LSW region is particularlysimplefor the local model.
In this cased~/dprises as p2, has a peakat p = lid, and falls thereafteras exp(—2pd).The form of
d/~P/dpfor the nonlocal model is more complicatedand can best be discussedby referring to the
dispersionrelationsfor bulk modesin the metal, shown in fig. 5(a), andfor modesassociatedwith the
vacuum—metal interface, shown in fig. 5(b). The propagatingmodes in the bulk metal are the
transversephotonmode and the longitudinal plasmonmode, both occurringfor to > tot,, which is well
above the range of frequenciesof interest in our discussion.The other feature of the bulk mode
spectrumis the broad continuumof electron—holeexcitations,which occur at any given frequencyfor
valuesof the bulk propagationvectork in the range

(2mto/h+ k~)”2—kF< k<(2mto/h+ k~)”2+kF. (3.24)

The modesassociatedwith the interfaceareshown in fig. 5(b), wherethe abscissais the componentof
the propagationvector parallelto the surface.The photonmodesabovethe metal form a continuum,
0<p < k~,coming from the projection of the light line onto the interface. The continuum of
electron—holeexcitationsis projectedinto a still broadercontinuum,0 <p < (2mto/h+ k~)112+ kF, with
the sameupperlimit as the bulk excitations(3.29). In addition thereis the propagatingsurfaceplasmon
mode alreadydiscussed.The projectionsof the modesabove tot, arenot shownsincewe are concerned
with lower frequencies.

The radiatingdipole couplesto the surfaceexcitationsby matchingthe surfaceFouriercomponents
in its fields with the surfaceexcitation spectrumof fig. 2(b). The thin horizontal line in fig. 5(b)
representsthe path of integrationin (3.15) at a frequencycomparableto that usedin fig. 4. The photon
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(a) BULK EXCITATIONS

*

0 kf k—- 2kf

(b) SURFACE EXCITATIONS

O kf
2kf

Fig. 5. Schematicexcitationspectrumof afree-electronmetalwith acore polarizationterm Eb. In (a),w~= e~2w
5is thebulk plasmonfrequency.In

(b), w~= (e, + 1)~
2/~

5is theasymptotic surfaceplasmonfrequencyfor a local metal.The mediumabovethemetal is vacuum.The thin horizontal
line in (b) correspondsto theabscissain fig. 4. After ref. [421.

emissioncorrespondsto the range0 <p <k1, to the left of the light line. Thesurfaceplasmonemission
correspondsto the point on the dispersioncurve just to the right of the light line. Finally, thereis the
broad underlying continuum of electron—hole excitations. Phasespace factors strongly weight the
large-pportions of the continua,leadingto peaksnearthe upperendsof the ranges.Note that thereis
no sharponsetof the electron—holeexcitations,but the sharphigh-p cutoff at the bulk valueremainsas
shown in fig. 4(a).

3.3. Fluorescencenear a single surface

We considerherethe specific problemof molecularfluorescencein the presenceof a metal surface.
The quantity of interest now is the decay rate y of an excited electronic state. According to the
semiclassicaltheory of radiationthis quantummechanicaldecayrateis relatedto the classicaldissipated
power by

= ~~P/hw. (3.25)

Thus, in the absenceof nonradiativedecaychannelsandwhen the molecule is far from the metal, the
decayis purely radiativeandis given by (3.25)in which ~ is given by the Larmorformula (3.11),



G. W. Ford and W.H. Weber, Electromagnetic interactions of molecules with metal surfaces 231

Yrad = I,zI2e ~2w3/3hc3. (3.26)

Here~ mustbe takento be twice the quantummechanicaltransitiondipole moment for the radiating
transition [1]. In this section,we use the principle embodiedin (3.25) to discuss the variouscon-
tributionsto the decayrate.

In addition to radiative decay most fluorescing molecules possessnonradiativedecay channels
associatedwith themediumin which theyare imbeddedor with their internalstructure.The total decay
ratefar from themetal is thenthe sumof the radiativedecayrateYrad anda nonradiativedecayrateYnr.

The radiativequantumefficiency is definedto be the ratio of the radiative decayrateto the total decay
rate,

= Yrad/(Yrad + Ynr). (3.27)

In generaloneassumesthaty~.is independentof themolecule—metalspacingd. The picturehereis that
the nonradiativedecay channel correspondsto an independentnonelectromagneticdecay that is
unaffectedby the presenceof the metal. One would, for example,not expectthis assumptionto be
correctfor an adsorbedmolecule.

When themolecule is spaceda distanced from the metalsurface,the totaldecayratewill be thesum
of the nonradiativedecayrate ‘Ynr and a rate given by the prescription(3.25) where ~?Pis the classical
powerdissipatedgiven by (3.15),

y(d) = Ynr + PP(d)Ihto. (3.28)

It is customaryto introducethe reduceddecayrate 5’(d), the decayratenormalizedwith respectto its
valuefar from the metal;

‘9(d) y(d)iy(d-*~). (3.29)

We form this quantity using (3.28) with ~Y’(d)given by (3.15). Noting that Yrad= /~P(d -+ ci~)/hw,with
P1~(d—~c)given by (3.11),andusing(3.27),we can write

~(d) = 1— ~ + ~k~3 Re J dp ~- [~-~i~--[1+ r~
2exp(2iq1d)]

+ ~j~i1-~[1+ r~2exp(2iq1d)]+ [1—r~2exp(2iqid)]}. (3.30)

Here the secondterm exactly cancels the contribution to the integral arising from the terms not
involving the reflection coefficients,thuswe arrive at the alternativeandsomewhatsimpler expression:

~(d) = 1 + ~qk~
3ReJ dp ~ exp~2i

1~,d){~p
2r~

2+ k~r~2— q~r~2}. (3.31)

This form of the resultcorrespondsto eqs. (2.17)and (2.29)of Chanceet al. [23].
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Fig. 6. Partialdecayratesvs. distancefor adipole in vacuumoutsidea Ag surfacecalculatedusing thenonlocalSCIB model. eqs.(2.20). (2.30), and
(3.30) with s~= 1 and hw = 1.96 eV. The Ag parametersare thesameas thosefor fig. 4.

The total normalized decay rate can be written as a sum of partial decay rates in a manner
correspondingto the partitioning (3.17) of the dissipatedpower. For this purpose,we refer to the
expression(3.30) andwrite

~(d) = Ynr + yphOiO

11(d)+ ~5~(d)+ YLSW(d), (3.32)

where ~nr = 1 — ~ is the nonradiativereduceddecayrate; yphOiOfl(d) is the normalizeddecayrate via
photonemissionandcorrespondsto the range0 <p < k, in the integralof (3.30); ‘

2~~is the normalized
decayrate via surfaceplasmon emissionand correspondsto the contributionof the pole in r~’

2 and
‘~~~(d)is the normalizeddecayrate via lossysurfacewavesand correspondsto the high-p continuum
contributionto the integral.Thesevariouscontributionsto the decaywere discussedin somedetail in
the previoussection.

The partial decay rates discussedabove are plotted in fig. 6 as a function of the molecule—metal
distance.Thesolid curvesarefor a perpendicular,the dashedfor a parallelorientationof the transition
dipole moment. An alternativeway of displaying theseresults is shown in fig. 7, wherewe plot the
relative decay probability vs. d using the sameparameters.For large d the radiative decay rates
dominate,and thesehavean oscillatory behaviordue to interference.The surfaceplasmon decayis
most important at intermediatedistances(102_103A). The lossy surfacewave contribution always
dominatesat small d.

The resultsof figs. 6 and 7 arecalculatedwith the reflection coefficientsgiven by the nonlocalSCIB
model, correspondingto (2.20) and (2.26) with e~and e, given by the Lindhard form (2.30). The
parametersare those appropriate for Ag. The lossy surface wave decay is thus due mainly to
electron—holeexcitations,with a smallelectronscatteringcontribution.The importanceof the nonlocal
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Fig. 7. Relative decay probabilities for the same parameters as used in the plots in fig. 6.

responseat smalld is shown in fig. 8, wherewe plot the ratio of the calculateddecayrateto Ytocat, the
ratedeterminedusingthe local result (3.23):

yiocai(d ~ k~’)= (8eihd3)’Im[(e
2 — ei)i(e2+ si)](/L~i+ ~/Lj~). (3.33)

We havealsoseparatedout theelectronscatteringcontribution,which is that part of YLSW proportional
to v. We see in fig. 8 that due to the electron—holeexcitations‘Y’-sw increasesmorerapidly thand

3,
reachinga peakat d 3 A, while the electronscatteringcontributionis gradually screenedout.

It is of interestto compareresultsobtainedfrom the SCIB modelas shownin fig. 8 with resultsfrom
the QIB model discussedin section 2.3. To be consistentwith the quantummechanicalformulation

~

— 7elect. Scott. —

0

d(A)—~

Fig. 8. Decayrate for a I dipole outside a Ag surfacecalculatedwith the5CIB model andnormalizedwith respectto thelocal resulteq. (3.33). The
lower curve is that part of the decayrate proportional to the electron scattering rate p.
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required in the QIB model we choosea hypothetical collisionless free-electronmetal with no core
polarization (Sb = 1) and an electron density correspondingto Cu. The only loss mechanismis thus
electron—holeexcitation. For a perpendiculardipole and using the quasistaticapproximation (r~2 = 0,

q1 = ip), the normalizeddecayrate (3.31)becomes:

~(d) = 1 + ~ijk~
3J dpp~e2 Im(r~

2). (3.34)

Figure9 showsresultsfor this formulausing the two models.As expectedfrom the resultsin fig. 3(b),

YQIB is always less than YSCIB. However,if the metal “surface” is chosento be at the jellium edgefor
the QIB model,the two modelsagreemuchbetter.This is shownin fig. 9 wherethe dottedcurve is the
solid curve shiftedto the right by —0.9A.

The conclusionto be madefrom this comparisonis that the two modelsgive qualitatively similar
results,andwith a slight shift in the effectivemolecule—metalspacingthe resultsarequantitativelyclose
as well. Which model to choseis to someextenta matterof taste.The QIB model certainlyhasa more
realisticelectrondensityprofile while the SCIB model allows the inclusion, albeit in a phenomenologi-
cal manner,of important effects such as core polarization and electronscattering.Furthermorethe
SCIB model is computationallymuch simpler; QIB calculationsrequire at least a factor of 10 more
computertime.

lO~~- -
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\•. ~-

\ ‘~:..
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Fig. 9. Comparisonbetweenthedecayratesfor a I dipole outsideafree-electronmetalwith hcu
5= 10.8eVobtainedfrom theQIB (solid) andSCIB

(dashed)models.The distancescaleis measuredfrom the infinite barrier in eachcase.The dotted curveis the QIB resultshifted to the right by
0.9 A, which correspondsto placing theeffectivesurface at thejellium edge.
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3.4. Dielectric layer above a metal

We nextconsiderthe problemof a dielectriclayerseparatingthe radiatingdipole from the metal,as
shownin the insetof fig. 10. This geometryis importantsinceit is often usedin experiments,notably
thoseby Drexhage[24,25], by Campionet al. [38], andby Adamset al. [36]. It shouldbe clear that the
nonlocalresponseof the metalwill havelittle effect. The point beingthat the dipole is spacedfar from
the metalso that the p-spacepowerspectrumis cut off at largep by the geometricalfactor exp(—2pt).
This means that we can usethe Fresnelformulas (2.6) and (2.7) for the reflection coefficients.The
formula (3.30)for the normalizeddecayrateoutsidea metalsurfacecan easilybegeneralizedto obtain
a formula appropriateto the geometryof fig. 10. To do this we simply replacethe two-layer reflection
coefficientsr~2and r~2with their three-layeranalogs[5]:t

—~r~’~= [r~’~+ ~ exp(2iq2t)]I[1 + r~Sr~Sexp(2iq2t)] , (3.35)

where t is the layer thickness.In addition to the surfaceplasmonmodeassociatedwith the pole in r~3
(which is nowshifted by the dielectric)we alsohavethepossibilityof waveguidemodesassociatedwith
the vanishingof the denominatorsin r~3or r~23.

As an examplewe show in fig. 10 the calculatedpower dissipatedspectrumfor a perpendicular
dipole just outside a dielectric layer on a Ag film. We have taken d = 2A, but the results are
insensitiveto d as long as d ~ t, A. For the value t = 8000A thereare two waveguidemodesTM0 and
TM1 in addition to the surfaceplasmon,andtheyall produceprominentpeaksin d~!Pidp.For a parallel
dipole the powerdissipatedspectrumwould havepeaksat the sameplacesas thosein fig. 10, as well as

a I I I I I I

0 - TM MODE -

E~~l / I
? }d~2A / TM0 MODE

02 - ~E22~t t~8OOOA / -

10- // E3METAL/ A -

I, //// /

018 1~0 ~ ~“ jIBp/k~-~

Fig. 10. Calculatedp-spacepower spectrum at hw = 1.96eV for a I dipole 2 A above a dielectric on a Ag surface.The dashed curve is the form
expectedwhen the dipole is in free space(d=

t This result, which is derived in ref. [5] pp, 464—472, can be obtained by summing plane wave amplitudes as outlined in the following section.
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additional peaks correspondingto the TE waveguidemodes. For comparisonwe also show in the
dashedcurveof fig. 10 the resultfor a dipole in free space(d = ~).The structurein the solid curve in
the radiationregion below the light line arisesfrom interference.

The formal calculationof the decayrateinto eachof the modesin fig. 10 can bedoneby expanding
eq. (3.35)in the vicinity of eachpoleandevaluatingthe polecontributionas was donein eqs. (3.20)and
(3.21).For computationalpurposes,however,adirect numericalintegrationof the polecontributionsis
simpler.

In fig. 11 we show resultsof a numericalintegrationto obtainthe decayratesfor the samestructure
asin fig. 10. TheTM0 andTM1 modeshavecutoffs at t = 2712 and5875 A, respectively.The normalized
decayrate into eachmodeis zeroat cutoff, increasesrapidly abovecutoff to a maximum,andthenfalls
slowly thereafter.This result can be understoodby realizing that the decayrate is a measureof the
overlapbetweenthe near fields of the dipole and the fields of the mode. At cutoff the mode field
extendsto z = +~,consequentlythereis a poormatchwith the dipolar fields. As the thicknessof the
dielectric is increasedabovecutoff, the modefield is more localized,providing a bettermatchwith the
dipolar fields. As the thicknessof the dielectric is further increased, however, the mode spreads
approximatelyas the guidethickness,thus producinga poorermatchwith the dipolar fields.

The surfaceplasmon decayrate ‘~ actually peaks when t 600A, a somewhatsurprising result,
sinceeq. (3.21) showsan exponentialfalloff with distancefrom the metal. The peakin ~ with finite t

comes aboutbecausein the range t A/10 the SP field is concentratedin the dielectric and thereby
providesa better matchto the dipolar fields. At largevaluesof t, the SP field is againconcentratedon
the metaland the exponentialfalloff is recovered.

I I I I I
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Fig. II. Normalizeddecayratesinto the variousguidedmodesassfunctionof the dielectricspacerthicknessfor a 1 dipole2 A abovethe dielectric.The
parameterscorrespondto Ag at hw = 1.96eV. The verticalarrowsindicate the cutoffsfor thefirst two waveguidemodes.
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3.5. Tunneljunctiongeometry

We now addressthe problem of a radiating dipole in a thin oxide layersandwichedbetweentwo
metalfilms as shownin fig. 12. This is the geometryusedin the Ramanscatteringexperimentsby Tsang
et al. [47] and in the experimentson light emission via inelastic tunneling (LEIT) by Lambe and
McCarthy [48]. Although our calculationsaredone specifically for a point dipole in the oxide of the
junction,which is appropriatefor the fluorescenceor Ramanscatteringproblem, to the extentthat the
fluctuatingtunnelingcurrentcan be confined to the oxide, the resultsare alsoapplicableto the LEIT
devices[49,50].

Theusualprocedurefor treatingthe problemshown in fig. 12 (see,e.g.,Chanceet al. [23]) is to form
for eachvalueof p theappropriatedownwardandupwardpropagatingsolutionsto Maxwell’s equations
with unknowncoefficientsin eachof the five regions.Therewill be six coefficientsfor regions2—4 and
one each for regions 1 and 5. Matching boundaryconditionsat each interface then produceseight
equationsin eightunknowns,whichcan besolvedto find thefield at the dipole.This procedurerequires
considerablealgebra.We give here a simpler derivationwhich usesour generalmethodof describing
the surfaceresponseby reflection coefficients.This hasthe further advantageof giving an intuitive
picture of the physical quantitiesinvolved in the calculation.

In the expression(3.30)for the normalizeddecayrate for a dipole abovea single surface,the three
factors r~’2exp(2iq1d), r~2exp(2iq1d),and —r~’2exp(2iq1d),give the complexamplitudechanges,respec-
tively, for the I E-field of a P-polarizedwave,the E-field of an S-polarizedwave,andthe E-field of
a P-polarizedwave,producedas eachwavepropagatesfrom z = d to the metalandback. When more
boundariesare addedto the problemwe needonly generalizethesethreequantities,allowing for all
multiple reflections,to obtainthe resultingfield at the dipole.

We consider first the I E-field from the P-polarizedwavesfor the geometryin fig. 12. Define
a = r~45exp(—2iq3z3)andb = T~2texp(2iq3z2),the amplitudechangesproducedwhena wave propagates
from the planeof the dipole (z = 0) to the metal below and back and to the metal aboveand back,
respectively.In our discussionthe interestwill be in thelow-p regime, in which casethe metalresponse
can bedescribedby a local dielectricconstantandthe three-layerreflection coefficientswill be given by

A

4 El vacuum

:: ~ �~ Agz=O———--—— — — ———~•X L3 �3 A~2O3

:: ~ E~ A~
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Fig. 12. Diagramfor summingtheplane-waveamplitudescontributingto thedecayrateof a dipole inside adielectricsandwichedbetweentwo metal
films.
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(3.35)with the appropriatechangesin subscripts,

r~= [r~’S + r~S exp(2iq1L3)]/[1 + ~ S,.~S exp(2iq1L3)]. (3.36)

The multiple reflectionswhich mustbe summedarerepresentedpictorially by the zig-zagarrowsin fig.
12; each crossingof the plane z = 0 contributesone term to the sum. The sum associatedwith the
arrowsgoing to the right is

a+ ab + a
2b + a2b2+ a3b2+ a3b3+~~~

andthe sum associatedwith the arrowsto the left is

b+ ab + ab2+a2b2+ a2b3+a3b3+~~~.

Summingthesegeometricserieswe obtain

A~= (1 + a)(1 + b)/(1 — ab)—1, (3.37)

where A~is defined as the amplitude changein the I E-fIeld componentof the P-polarizedwave
producedby all reflectionsfrom the metal surfaces.For the componentof the S-polarizedwaves,the
sums are exactly the same as above. Thus A~is given by (3.37) with a = r~

5exp(—2iq3z3) and
b = T~2texp(2iq3z2).For the 1 componentof the P-polarized waves, there is a sign changeat each
reflection, thus A~’ is given by (3.37) with a = —r~5exp(—2iq3z3) and b = ‘~T~’2texp(2iq3z2).Collecting
theseresultstogetherandmodifying eq. (3.30) for the dipole being in a medium with dielectric constant
E3, we find for the normalizeddecayrate

= 1- ~ + ~ Re Jdp ~ {p2[l + r~5exp(-2ig3z3)][1 + r~21 exp(2ig3z2)]]
q3 r321r345exp( iq3 ~)

0

~1 2k2I[l + r~45exp(—2ig3z3)][1 + r~21exp(2ig3z2)]2/-~Il 3[ I — r~1r~5exp(2iq3L3)

2 2111 — r~’45exp(—2ig3z3)][1 — r~21exp(2ig3z2)]~_p p ~ . (3.38)
L ~ r32~r~5exp~lq3~3

As an examplewe show in fig. 13 a portionof the normalizedp-spacepowerspectrum,identified as
the integrandin (3.38) multiplied by the factorsprecedingthe integral. In the calculationwe havetaken

= I and specializedto the I orientationof the dipole. The dipole is in the oxide layerandthe lower
electrodewastakento be infinitely thick, which is a reasonableapproximationto the actual devices.

Therearetwo guidedmodesof interestnow as indicatedby the two peaksin the power spectrumin
fig. 13. The larger peak arises from the vanishing of the quantity I — r~21r~5exp(2iq3L3) in the
denominatorof di~!1

5/dp.This pole correspondsto the slow wave or junction mode occurring at

PJM 10k
1 in fig. 13. The fields associatedwith this mode are peakedin the oxide and decayrapidly

outside;consequentlythe dipole couplesvery strongly to it. The smallerpeakarisesfrom a pole in the
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Fig. 13. Calculatedp-spacepower spectrumfor a I dipole in the oxide of a tunnel junction as shown in the inset. The parametersare ~ = 1,
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Fig. 14. Normalized power dissipation vs. frequency (equivalent to the normalized decay rate) for a I dipole in the oxide of thetunnel junction
shown in the inset of fig. 13.
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two-layer reflection coefficient r~1occurringin rç21. This polecorrespondsto the surfaceplasmonmode
localizedon the Ag—vacuuminterface.It is modified slightly by the multilayeredstructure.The fields of
the surfaceplasmonarepeakedat the vacuuminterfaceand extendwell into the vacuum;consequently
the coupling of the dipole field to it is much weaker than to the junction mode. This feature is
demonstratedin fig. 14 wherewe plot as afunction of frequencythe powersemittedinto the two guided
modes as well as into free photons.Theseare all normalizedwith respectto the power emitted by a
dipole in an infinite medium s~,which has the effect of suppressingthe &~ dependence.The most
striking featurein fig. 14 is the completedominanceof the junction mode.

3.6. Fluorescenceneara small sphere

We concludethis chapterwith a discussionof a fluorescing molecule near a small spherewhose
responseis describedby a local dielectric constant.This discussion is pertinent to a large class of
experimentson fluorescenceand Raman scatteringfrom moleculeson metal-islandfilms [51—53], on
particle arrays[54,55], and in metal—colloid solutions [56—59].Theoreticaltreatmentsof this problem
havebeengiven by severalauthors[60—62].

Considera point dipole oscillating harmonically at frequencyw and placed near a spherein a
medium with dielectric constants~as shown in fig. 15. We are interestedin the caseof a molecule
placedclose to a spherewhose radius is small comparedwith the wavelengthof the emitted radiation
(a, R ~ ciw). It is thereforeappropriateto use the quasistaticapproximation.On the otherhand, if the
sphereis metal, it should not be so small that nonlocal effects are important.This meanswe must
assumekFa ~‘ 1. Our aim here will be to calculatethe power dissipatedby the dipole, and as in the
planarcasediscussedin section3.1, we must calculatethe “reflected” or “induced” field at the dipole
dueto the presenceof the sphere.In the planarcasethe effect of the metalsurfacewas describedby the
reflection coefficients; in the spherical case the role of the reflection coefficients is taken by the
multipole polarizabilities,which areintroducedbelow.

The quasistaticpotentialdue to the dipole is

R

61

A

—————a

Fig. 15. Geometryfor calculating thedecayratefor a dipole nearasphere.
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~i~dipoIe = (~i- r2)/E1r~= (j.~j~1r~)P1(cos02)+ (p~1/s1r~)P~(cos02)cos4), (3.39)

where p.±and ~ are the componentsof ,z perpendicularand parallel to the surfaceof the sphere
beneaththe dipole. Here P7

1 is the associatedLegendrepolynomial and 4) is the azimuthalangle.We
now use the formula [63],

-~Pr(cos02) = (_1)m÷t~, (/1) ~~
2P71(cos0k), r5 < R, (3.40)

where(~) N!/M!(N — M)! is the binomial coefficient.Using this result the potentialdueto the dipole
in the region a <r < R can be written

~dipoIe(T) = ~— ~ (—iz±6m,o+ ~iiôm,i) ~ (/~) ~ P71(cos0~)cosm4). (3.41)

The total potentialjust outsidethe spheremustbe the sum of this field andthe inducedfield from the
sphere.

The inducedfield can be expressedin termsof the multipole polarizabilities,which characterizethe
responseof the sphereto appliedmultipole fields [42,64]. For an applied21-polefield the potentialjust
outsidethe spheremustbe of the form

(—ri + a1/~1r~
1)P71(cos0~)cosm4), (3.42)

wherethe first term in parenthesescorrespondsto the potential of the appliedfield while the second
correspondsto the potential of the inducedfield, due to the 21-pole inducedwithin the sphere.The
coefficient at is the multipole polarizability.

The total potential,~P= ~dipole + ~‘~ind, just outsidethespheremustbe a sumof potentialsof the form
(3.42). Therefore,from (3.41) we find

PIfld(r) = ~~L3m,0 — Iuii~m,i)~ (i+~) ~ P71(cos0~)cosmçb. (3.43)

The induced electric field is given by E
1fld(r) = —VI.~,fld(r),and after somecalculationthe field at the

dipole is found to be

Efld(R) = ~ 21+4 [(1+ 1)
2~i+ ~l(l+ 1)~tii1]. (3.44)

61 ~

The powerdissipatedby the dipole is given by inserting(3.49) into (3.1), giving

= — (1 + 1)[(l + 1)i ~+ ~1p.if] Im(a,)/R2~4. (3.45)
1=1 El

This formula is the analog of the planesurfaceresult (3.22) in which the integral over the surface
wavevectorp is replacedby a sum over I and the quasistaticreflection coefficient is replacedby the
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multipole polarizability. Like its planewave analog,(3.45) is quite general,it can be applied to any
model for which the multipole polarizabilitiescan be calculated.

For our modelof the spherehaving a local dielectricconstante2, the a1 are given by

a, = Et I~I+~ a
2~1. (3.46)

Thus the dissipatedpower becomes

= I 21-ft
= ~- ~ (I + 1)[(l + 1)~+ ~1ji~]Im{

1 ~i +~)EI} R
2t~4~ (3.47)

When aIR ~ 1, the seriesin this expressionis dominatedby the dipole term (1 = 1), andthe reflected
field is just that expectedfrom a polarizablepoint at the centerof the sphere.When aIR 1, however,
the power seriesis dominatedby the large 1 terms, andquite a different limit is reached.To see this
limit we set R = a + d andexpand(3.47) for dia ~ 1, giving

= (1 + 1)[(/ + 1)j~+ ~l~f] Im (1+ d/a)214~. (3.48)

Now taking the limit I —+ ~, making thesubstitutionp = (I + 1)/a,andchangingthe sumto an integralwe
have

W 1 2 2 1 2 182 E~l —2 ci
~P_~— ~p dp[~~~.+~

1]Im1 ~e ‘~

z_E1j E2 Et)

=8~d3(~1+2~)1mfE2+Ej. (3.49)

This result is precisely the same as the correspondingplane surface result (3.23), which is to be
expected.When the dipole is very closeto the sphere,the reflectedfield at the dipole is the sameas that
from a semi-infiniteplanarsurface.

The result (3.47) can be turned into a formula for the normalizeddecayratefor a moleculeplaced
neara sphere.Using the prescription:~(R) = I + 7)I~?1’tree,where ~frec is the power radiatedby a free
dipole given by the Larmorformula (3.11).The result is

21+1~(R) = I + k1R)
3~2~ (I + 1)[(i + 1)~+ ~Iji~]imf

1 +~}(~). (3.50)

The result of a calculationusing this formula for a I dipole and a Ag sphereof radius 100 A is
shown in the solid curve in fig. 16. The dashedcurvedlabeled“point” is obtainedby keepingonly the

= 1 term in (3.50), in which casethe sphereresponseis that of a polarizablepoint. The dashedcurve
labeled“plane” is the plane-surfaceresult obtainedby replacingthe sum in (3.50) by its large-i limit
correspondingto (3.49). Note the transition from “point” responsefar from the sphereto “plane”
responseclose to the sphere,which occursat R 2a.
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Fig. 16. Normalizeddecay ratefor adipole outside a spherecalculatedwith eq. (3.50). The dashedcurveslabeled “point” and “plane” correspond,
respectively,to approximatesolutionsvalid whenthe dipole is either very far from or very close to thesphere.
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Fig. 17. Samecalculationas in fig. 16, but for a frequencyat which thedipole polarizability of thespherehasa resonance.

A similar plot is shown in fig. 17, but therethe frequencyhas beenchosenso that Re{62} = —2,
correspondingto a resonancein the dipole polarizability a1. In this case,as one might expect,the
“point” responsepersiststo much closerspacings.

We emphasizethat in thissectionwehavebeenconsideringthepowerdissipatedby losseswithin the
sphere.There is in addition power radiatedby the dipole plus the sphereacting as a driven antenna.
This radiation is discussedin section5.4.

4. Shift andbroadening of molecular vibration modes

In chapter 3 we discussedthefluorescenceproblem,in whichthe moleculeis generallywell separated
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from the metal surfaceand thereis little questionas to the adequacyof electromagneticmethods.In
thischapterwe considerthe influenceof the surfaceon the vibrationalmodesof the molecule,which is
takento be very close to or evenadsorbedonto it. Therewill thereforebe importantnonelectromag-
netic effects. Thesewe try to take into accountby separatearguments,but we shouldmakeclear our
view that one should not expect the sort of quantitative accuracy of prediction one has in the
fluorescenceapplications.Rather,the aim will be to build intuition and in particular to investigateto
what extentthe physicalpictureof a dipole interactingwith its imageis meaningful.

The earliestdiscussions[65—67] of the effectswe considerwere basedon the simple picture of a
point-like molecule placed above a perfectly reflecting metal surface. The shift in a molecular
vibrational frequencydue to the presenceof the metal surfacecan be calculatedin this caseby the
following brief argument.We assumethe molecule hasa single mode vibrating perpendicularto the
surface.The dipole polarizability of the free molecule, i.e., the moleculefar from the surface,is of the
phenomenologicalform

a(w) = ae+ a~I[1 — (w/w~)2] , (4.1)

wherea,, is the electronic (high-frequency)polarizability, a~is the polarizability associatedwith the
vibrationalmode, andw,. is the frequencyof the mode.When the moleculeis placedat height d above
the surfacein the presenceof an applied electric field E

0 e”°’perpendicularto the surface,the induced
dipole moment will be ~(W)e~°”, where

= a(w)[Eo+ ,a(w)/4d
3]. (4.2)

Here the quantity in squarebracketsis the amplitude of the total externalelectric field at the dipole,
which is the sum of the applied field and the field due to the image dipole a distanced below the
surface.Solving for p~w), we find

~(w) i~aw)/
4d3E0. (4.3)

The resonantfrequencyis the frequencyat which /.L(w) hasa pole, i.e., using(4.1)

1/ a~+a~\ /7 ae\]t/2
WrWv[~l 4d

3 )/ l~,1_~)] . (4.4)

Thus the frequencyis alwayslowered. If the moleculeis far from the surface,the shift is

Wr — WV —(a~I8d3)w~. (4.4a)

The observedshifts for adsorbedmoleculesareof a few percent.Since electronicpolarizabilitiesare
tpyically somefraction of the molecularvolume, it is clear that theseshiftscan be fitted with spacings
that aresomemultiple of the molecularradius.For an adsorbedmolecule,however,the spacingshould
be somewhatsmaller, which meansthat the shiftspredictedby thissimpleargumentareprobablyrather
too large. More important, thereare obvious effects that should changethis simple picture. Among
theseare finite molecularsize andnonlocal responseof the metal, both of which might be expectedto
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modify significantly the above results.The question thereforeis to what extent is the picture of an
electromagneticshift arisingfrom a moleculeinteractingwith its imagevalid. We try to give an answer
in this chapter.

In section4.1 we show how to take into accountnonlocalresponseof the metalandfinite molecular
size for a moleculewhoseelectromagneticresponseis characterizedby its multiple polarizabilities.We
alsocalculatetheresponsefunction,which is theanalogof the expression(4.3) above. In section4.2 we
discussthe calculationof the multipole polarizabilitiesand give results for several simple electronic
models. Then in section 4.3, just as above, we identify the resonantfrequencywith a pole of the
responsefunction. This poleoccursat a complexfrequency,the imaginarypart arisingfrom loss in the
metal,sowe find not only a shift but alsoa broadening.In section4.4 we discussothercontributionsto
the shift, the mechanicalshift due to the adsorptionbond to the metalandthe “chemical” shift due to
hybridizationof the molecularorbitalswith metallic electronstates.We then combinetheseshiftswith
the electromagneticshift and broadeningand comparethem with experimentalresults. Finally, in
section4.5 we give a short discussionof the coveragedependenceof the shift. We havechosenCO on
copperfor our model calculations,sincethe mostwidely studiedsystemfrom an experimentalpoint of
view is CO on various noble metals. Experimentalwork on this problem has been reviewed by
SheppardandNguyen[68].

4.1. Responseof a sphericalmoleculeabovea nonlocal metal

We consider here the problem of a sphericalmolecule placedabove a nonlocalmetal surface,as
shown in fig. 18. We want to calculatethe induceddipole moment in the moleculedue to an applied
field E0e’~”.We assumethe molecular radius a and the molecule—metalspacing d are both small
comparedwith the wavelengthof emittedlight A = 2irclws~/2~This assumptionhastwo consequences:
the appliedfield maybe takenas uniform, andwe mayusethe quasistaticapproximationin calculating
the response.In this approximation,the nonlocalresponseof the metalsurfacecan be describedby the
P-polarizedreflection coefficient,as discussedin section2.2, while the responseof the moleculecan be
describedby its multipolepolarizabilities,introducedin anothercontextin section3.6. The spirit of the
discussion in this section will thereforebe that the molecule and the metal are describedby their

A

///// ///////�/

Fig. 18. Geometryfor a sphericalmoleculeabove ametal.
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responsesto externalfields, and we calculateonly with the fields outsideof both. The calculation of
theseresponses,multipole polarizabilitiesfor the moleculeandreflection coefficientsfor the metal, is
viewed as a problemto be discussedseparately.

As in our previousdiscussionwe choosethe metal surfaceto be the xy planewith the metal filling
the region below the plane.The sphere(molecule)is centeredon the z axis at a height d abovethe
planeas shown in fig. 18. In the quasistaticapproximationthe electric field in the region outside the
moleculeandabovethe metal (the unhatchedregion in fig. 18) is obtainedfrom a potentialof the form

~1i= —En-r + ~ m~l Bmir~1P71(cos0~)exp(im4)
1)+ Jdp B(p) exp[i(p - p — pz)], (4.5)

where

r=p+z~=r1+id, (4.6)

and0~,& arethe polar anglesof r1. In (4.5) the first term is the potentialof the uniform appliedfield,
the secondterm is thesum overthe potentialsdueto the inducedmultipolesin the sphere,andthe third
term is the integral over the potential of the inducedfield from the metal correspondingto p, the xy
projection of the propagation vector. The coefficients Birn and B(p) are determinedfrom the
requirementthat just abovethe metalsurfacethis potentialmustbea superpositionof potentialsof the
form

exp(ip - p)(_e~~Z + r
t
1’2 e~~z), (4.7)

correspondingto the form (2.37) of the quasistaticelectric field, while just outside the sphere the

potentialmust be a superpositionof potentialsof the form

‘I~im (—ru + P7’(cos0~)exp(im&), (4.8)
EtT’

as in (3.42). The similarity of thesetwo forms shouldbe obvious.In either casethe first term within the
parenthesesrepresentsthe potential of an applied field due to external sources,while the second
representsthe potential of the field due to inducedsourceswithin the medium.In the planarcasethe
responseis characterizedby the reflection coefficient r~2= r~2(p, w), while in the sphericalcase it is
characterizedby the multipole polarizabilitiesa1 = a,(w). In this presentsection,as we havestated,we
view thesequantitiesas given.

In order to apply theseconditionswe usea pair of mathematicalidentities. The first is

exp(ip - p - pz)= e~~ m~-1i(pr1) P71(cos0~)exp[im(4)1 —4))], (4.9)

where 4) is the azimuthal angle of p. This identity, which is valid for z > 0, is used to expressthe
potentialof the reflectedfield from the metal in termsof incident multipole fields at the molecule.The
secondidentity is
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r~’tP71(cos0~)exp(imçS
1)= 2~2;)IJ dpp’

1exp[ip . p + p(z - d)] exp(imq5), (4.10)

which holdsfor z<d andservesto expressthe potentialof the inducedmultipole in the molecule in
terms of plane waves incident upon the surface.A brief derivation of theseidentities is given in
appendixA.

To applythe conditionjust abovethe metalsurface,we use(4.10) in thetermswithin the sum in (4.5)

to write

= —. m — I-i -pd+1m4.

~P=_Eo.r+Jdpexp(ip.p)[_ ~~Bim (I) e~+B(p)ePz]. (4.11)

Requiring the integrandto be of the form (4.7) we find

—. m — I-i im4,
B(p) = r~’

2e~~ m~-l Bim lp m)! (4.12)

Note that the uniform field doesnot enterthis condition, since a uniform field alwayscan satisfythe
boundaryconditions.

Next considerthe conditionjust outsidethe sphere.We put (4.9) in the integral in (4.5) to write

= -En. r1 + ~ ± [(1+m)! I dpB(p)(-p)’ e1m~ru+ B,mr~tt]P71(cos0~)exp(im4)t),
(4.13)

wherewe havedroppedthe constantterms(from I = 0 in (4.9) andfrom replacingr = r1 + i~d in the first
term), which only adjust the potentialat the molecule.We can write

E0 - rt = 2- Eor1P1(cos0k)— ~(I — ij). E0r1Pu(cos0~)e°~°+ (1 + i~)- Eor1P~.~(cos0~)e”~, (4.14)

wherewe haveusedP1= coso~,P~j= —2P~

t = —sin 0. Usingthis expressionin (4.13) andrequiringthe

result to be a sum of potentialsof the form (4.8), we find

~Btm + (l~)’ JdpB(p)(-p)te~m~ &.~[2~Eoôm.

0 ~& ~~Eo8m,i+ (1+~Eo~m,i].

(4.15)

This relationtogetherwith the relation(4.12) determinesthe coefficientsin the expression(4.5) for the
pontential.

To find the coefficientsBim we put B(p) given by (4.12) in the integral in the relation (4.15). In the
resultingintegralthe integrationover 4), the azimuthalangleof p, givesa factor of 2Th5m,m’, wherem’ is

the summationvariablein (4.12). For eachmwe thusobtain an infinite set of coupledinhomogeneous
linear equationsfor the coefficientsBirn, which we write in the form
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~Bim + ~()l+1’+l(/+l )F~±1BI’m = 8,~[2 . E06m0 ~ — ~). Eo3mi + (1 + i~)Eoömt], (4.16)

wherewhere(~)is the binomial coefficient and

FL(W, d)sss~jJ dpr~2(p, w)pL e

2Pd. (4.17)

Since theseequationsare uncoupledfor different values of m (a consequenceof our assumptionof
sphericalsymmetryfor the molecule),we see immediately

Bim = 0, m� 0, ±1. (4.18)

For m= 0, ±1we can write theseequationsin a simpler form if we introducea new set of coefficients
Aim given by

B
1,0 = (_)~t i~ . ~ B1,, = ~—~‘ ~ (1— i~)- E0A,,,, B11 = (—)‘~i(I + t~)- E0A1,.

(4.19)

The coupledequations(4.16)can thenbe written in the form

= (4.20)

where

M - 1 1 ~ 4~1
- 1,1’ - ~ ~1+ m) ~ (.)

The solutionof theseequationsis expressedby Cramer’srule [69]:

Aim = cof(M71,)Idet(M), (4.22)

where the denominatoris the determinantof the matrix M~’ whoseelementsare the Mn., and the
numeratoris the cofactorof the 1, 1 elementin this matrix. In our case,wherethe matricesare infinite,
the meaningof (4.22) is the limit as n—*cc of the correspondingratio formedwith the nth truncationof
M

m, the n xn matrix in the upper left hand corner. A brief discussionof convergenceof infinite
determinantsis given by WhittakerandWatson[70].

The potentialof the induceddipole momentin the spherecorrespondsto the I = 1 termsin the sum
in (4.5). That is,

- r,/s
1r~= m~1 B,.m(1/r~)Pr(cos0,) exp(im4)1). (4.23)
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Fromthis expressionwe can identify the componentsof ~t, using(4.14).Then,using(4.19)we can write
thesecomponentsin termsof the coefficientsAi,m. Finally, we note A1,_1 = A1,1 as we seefrom (4.22)
and the fact that the matrix M

m is the transposeof the matrix Mm, which in turn is clear from the
expression(4.21)for the matrix elements.The resultcan be written in the form

p(w, d)= A

1,02 - E02 + A1,1(E0 — 2 . Eoi). (4.24)

This is our desiredexpressionfor the induced dipole moment in the sphere.When the reflection
coefficient r~2(p,w) andthe multipole polarizabilitiesat(w) aregiven, the quantitiesA1,0 andA1,1 are
thereforecalculatedby the following prescription.First calculatethe integralsFL given by (4.17).Then
form the matrix M

m whoseelementsaregiven by (4.21).The quantitiesAi,m are thengiven by (4.22).
In practicethisprescriptionis carriedout for successivetruncationsof the matrix, increasingthe size of
the truncationuntil convergenceis obtained.

The quantitiesA
1,1 and A1,0 are generalizedsusceptibilities,in the senseof linear responsetheory

[71].As functionsof thecomplexvariablew theyareanalyticandhaveno zerosin theupperhalf-plane.
Moreover,~1~Ai,m(~)is what is termeda positivefunction, with real part positivefor w in the upper
half-planeas well on the real axis. The analyticcontinuationof the generalizedsusceptibilitiesinto the
lower half-planewill in generalhavepoles,which areassociatedwith normalmodesof the system.The
positions of thesepoles give the complex frequenciesof the normal modes,the real part being the
frequencyand twice the (negative) imaginary part being the decay rate of the mode. We use these
generalideasin section4.3 to obtainexpressionsfor the shift andbroadeningof a molecularvibration
mode.

4.2. Multipolepolarizabilities

We discussherethe calculationof the multipole polarizabilitiesfor somesimple electronicsystems.
The aim will be to gain insight into the structureof thesequantitiesfor real moleculesandto obtain for
special models explicit expressionsuseful for computationsbased on the formalism derived in the
previoussection.

For a one-electronsystemwith a non-degeneratesphericallysymmetric ground state, the 2
t-pole

polarizability is given by the quantummechanicalformula

a, = e2~ I(cl’t, r’P,(cos 0)~~)I2(~— 1 — + ~ — ~)‘ (4.25)

wherethe sum is over intermediatestates~i, with energy~, and4’~is the ground statewith energy ~

This is the direct generalizationof the well-known Kramers—Heisenbergdispersionformula for the
dipole polarizability [72]. In fact, this formula is not as useful as a basis for calculationas it appears,
since except for the harmonic oscillator the sum convergesslowly. However, we do see from this
formula that therewill be resonancesin a

1 correspondingto the Bohr frequenciesw = ±(~~— ~‘g)Ih.In
this chapter we are interestedin the casewhere there is such a resonance,correspondingto a
vibrational frequencyof an adsorbedmolecule.However,we will postponethe discussionof this case
and considerfirst the casewherethe frequencyof the exciting radiation is well below all the Bohr
frequenciesandthe polarizabilitybecomesthe staticpolarizability.

For the static polarizabilitiesa more useful approachthan the Kramers—Heisenbergformula is to
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solve explicitly for the perturbedwave function [73]. According to (3.42) the multipole polarizabilities
give the responseof the moleculeto an applied multipole field. We thereforeconsidera perturbed
Hamiltonianof the form

H = H
0 + erlP,(cos0), (4.26)

where the secondterm is —e times the potentialof the appliedmultipole field and

H0 —(h
2/2m)V2+ U(r) (4.27)

is the molecularHamiltonian correspondingto a single electron in a sphericallysymmetric potential
U(r). The unperturbedgroundstateis a sphericallysymmetriceigenstateof Ho:

Hoçlig= ~‘gç/ig, çItg = çlig(r). (4.28)

The perturbedeigenvalueproblemis

(Ho+er’P,)t/i= ~çIi. (4.29)

Expanding

= çli~+ ~ +..., ~ = + ~ +..., (4.30)

the first-orderequationis

(H
0 ~~g)~~((1) = —er’P,t/ig+ ~(1)~g , (4.31)

The first-orderenergyis

= J dr~(r)er’Pt(cos0)(//g(r) =0, (4.32)

since / > 0. If we put therefore

= R,(r)P,(cos0) (4.33)

and use(4.27), the first-orderequation(4.31)becomes

[~- (~4~~r2~_+~ 1)) + U(r)— ~g]R, = —er’t//g. (4.34)

This inhomogeneousdifferential equationfor the perturbedradial wavefunction R is sometimescalled
the Sternheimerequation[74].

If we havesolved the Sternheimerequation,the inducedchargedensityis

enlfld(r) = _e(14,12_~~g~2)= —e(i/i~R1+ t/igR”flPj + . (4.35)



G. W. Ford and W.H. Weber, Electromagnetic interactions of molecules with metal surfaces 251

The correspondinginducedelectrostaticpotentialin amedium with dielectricconstantE
1 is

~,fld(r) = J dr’ Tu1d(~~)-~ ~ Jdr’ r”P,(~~)fldfr’) (4.36)

wherewe haveusedthe well-known expansionof r — r’~for r> r’ [75]. Using the addition theoremfor
sphericalharmonics[75],

P1(~~‘)= Pi(cos0)P,(cos0’)+ 2 ~ + “~ P71(cos0)P71(cos0’) cosm(4)-4)’), (4.37)

the form (4.35) for find, and the orthogonalityof the sphericalharmonics[75], we find the induced
potentialis of the form correspondingto the defining relation (3.42),

eblfld(r) —‘ (a,IE,r’~)P,(cos0) , (4.38)

wherethe multipole polarizability is given by

= — 4~reJ drr’~
2[i/i~R,(r)+ 41g(r)Rj(r)*]. (4.39)

The Sternheimerequationhasbeen usedextensivelyas the basis for numericalcalculationof the
multipole polarizabilities for small I. For a recentexample, see ref. [76]. We are more interested,
however,in the behaviorfor all I, for whichexactresultsfor simple modelsareinstructive.

Fora hydrogenicatom -

V(r) = —Ze2/r, çIig(r) = ~‘2(Zao)312exp(—r/Zao), (4.40)

wherea
0= h

2/me2.The solution of (4.34)is

R,(r) = — .~ (Zao)2(~r’ + ~—~-~~-—)~ig(r). (4.41)

Puttingthis in (4.39) we find

a, = Z(Zao)21~1(21+ i)!(l + 2) (4.42)

We can write this in the form

(21+1)!(l+2) 21-1

a
1 — 181(12)1_I a1(r ) , (4.43)

wherea1 is the dipole polarizability and
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(r2) = J dr~i~r2~g= 3(Zao)2 (4.44)

is the meansquareradiusof the groundstate.
In the sameway for the harmonicoscillator

V(r) = ~mw2
0r

2 (4.45)

t/Jg(r) = (mwoli’rh)314exp(—mwor2I2h). (4.46)

The solution of (4.34) is

R,(r) = —(ellhwo)r’t/ig(r), (4.47)

and

a, = (21-1)!! a
1(r

2)11, (4.48)

where (2I—1)!!= 1X3x5~.(2/— 1) and

a
1 = e

2/mw~, (r2) = 3h/2mwo. (4.49)

Note that a
1 is the familiar staticdipole polarizability of the oscillator.

As a final exampleof a quantummechanicalmodel for which the solution is simple we considerthe
infinite sphericalwell for which

V(r) = ~ ~ ~, çli~(r)= (2lTa)_h/2sin(’rrrla)Ir. (4.50)

The solution of (4.34) is

1 1/2

R,(r) = — ~ (~-~) [r’ cos(irrla)+ a’j,(-zrr/a)Ij,(i-r)] , (4.51)

whereii is the sphericalBesselfunction. Puttingthis in (4.39)we find

— ________________ 21-2 452

a, — (I + 1)(2I+ 1)1T
212g(1)a

1a

where

g(1) = J dy [y
21~1sin y cosy + ~ sin yJ,(y)IJ,(~)], (4.53)
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and

a
1= (1/3~r

2+1/4n-2)a4/ao. (4.54)

The integralsg(l) are elementaryandcan be performedexplicitly, althoughthis soonbecomestedious
as I increases.However, for I ~ 3 theyare well approximatedby their asymptoticform:

g(I) — 3~2t+5/[(21+ 1)2 + ~.2][(21 + 1)2 + (2ir)2] . (4.55)

Theseresultsfor quantummechanicalmodelsareall to be comparedwith the multipole polarizabil-
ity of a uniform dielectricsphere:

— 611(63— 61) 21+1 — 3! - 21—2 456a, — ~ + (I + 1)et a — 21 + 1 + (1— 1)at/6
1a

3

where63 is the dielectricconstantof the sphereand a its radius.
In fig. 19 we comparethe multipole polarizabilitiesas calcualtedfrom the aboveformulas for the

various models.Here we plot the dimensionlessquantity a,1a
1a

212 as a function of l for eachmodel.
For the spherical squarewell and dielectric spheremodels a is the sphere radius, while for the
hydrogenicatom andoscillatormodelsa is the rms radiusof the groundstate (a = (r2)~2).The results
for the variousmodelsarestrikingly different,but the reasonsfor this can be easilyunderstood.For the
hydrogenicatomsandoscillatormodelsthe integral(4.39)is for large 1 dominatedby the region of large
r. This is so becauseof the high power of r appearingexplicitly in the integrandof (4.39) and also
becauseof the correspondinghigh powerof r multiplying ~ in the expressions(4.41)and (4.47)for R,.
In thisregionof larger, however,the perturbingpotentialin (4.29)is no longer smallcomparedwith the
molecularpotential U(r), andperturbationtheory cannotbeexpectedto be valid. On the otherhand,
thereis no suchcriticism of the predictionsfor the sphericalsquarewell modelsincethe infinite barrier
at r = a limits the rangeof integration.There,however,for I largethe high powerof r in the integrand
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Fig. 19. Multipole polarizabilities for various molecular models.
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of (4.39) emphasizesthe neighborhoodof r = a, where t/ig(r) vanishes.This is the reasonfor the rapid
fall-off as shown in fig. 19 for this model. Intermediatebetween the rapid increaseshown for the
hydrogenicatom andoscillator models and the rapid decreaseshown for the sphericalsquarewell
model is the smoothtransition to an asymptoticvalue shownfor the dielectric spheremodel.Primarily
becausewe feel that the extremebehavior of the other models is largely of calculationalorigin and
reflects artificial featuresof the models rather than essentialphysics, we choose for most of our
calculationsthe dielectric spheremodel to representthe multipole polarizabilitiesof a finite molecule.
We shouldemphasizethat this is a crudeapproximationwhich probablyunderestimatesthe a,, at least
for intermediatevalues of I. Thereis a needfor a careful, critical study of methodsfor calculating
multipole polarizabilitiesfor realistic molecularmodels.

We now turn to the problem of including dynamical effects in the multipole polarizabilities, effects
which are essentialif we areto describethe resonanceassociatedwith molecularvibrations.The key to
how we do this is the phenomenologicalform (4.1) for the dipole polarizability of a molecule with a
single vibrational mode. There ae representsthe polarizability due to the electronic cloud of the
moleculeand is frequencyindependentwhile the additionalpolarizability due to the vibrational mode
has a resonancestructure. This is the form of the polarizability which arises from a model of the
molecule as a polarizablesphere(the electroncloud) with a point-like vibrating dipole at the center
[77]. We accordinglyextendthis model to the higher multipoles, which will be entirely of electronic
origin andof the form (4.56)with a, = ae. That is we write

31 21—2
a,(w) = 21 + 1+ (1— 1)a~/v,a3~1 (w/WV)2611 (4.57)

As we haveemphasizedabove,this is a crudemodel,but it doesdescribethe essentialphysicalfeatures
of a polarizableelectroncloud surroundingthe vibrating bond.

Efrima and Metiu [78] have used a very different finite-size molecularmodel. They model the
vibrational polarizability by a pair of point chargesoscillating about a finite separationand the
electronicpolarizability by a polarizablepoint at the centerof the molecule.Their model and ours
might be viewedas two extremes.We treat the vibratoras point-like andascribeall finite-sizeeffectsto
the electron cloud. They treat the electron cloud as point-like and ascribe finite size effects to the
separationof the ion cores.We believethat for calculatingthe electromagneticeffects, our model is
more appropriate,sincethe outerregionsof the moleculearein fact occupiedby the valenceelectrons.
Our calculationson this and similar problemsshow that all finite-sizeeffectsdisappearrapidly as the
molecule is moved away from the surface.Thus, the vibrator, being more distant than the electron
cloud, should be morepoint-like.

4.3. Shift and broadening of the vibrational mode

We considerhere the caseof a moleculenearthe surfacerespondingto an electric field oriented
perpendicularto the surface.The example we havein mind is CO adsorbedon Cu with the molecule
orientedperpendicularto the surfaceand with the C atom bondedto the surface.We describethe
molecular responseby the multipole polarizabilitiesgiven by (4.57) and the metal responseby the
quasistaticreflectioncoefficient r~

2.The complexvibrationalfrequencyWr of the modewill thereforebe
associatedwith a pole in the generalizedsusceptibilityA,o(W),which accordingto (4.24) describesthe
induced dipole moment in the molecule. The idea here is very simple: the induced dipole moment
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satisfiesthe equation

= E0, (4.58)

andtherewill thereforebe a free motion in zeroappliedfield (i.e., a normalmode)at (U = (Or if andonly
if

[Aio(Wr)]~ = 0, (4.59)

(i.e., A1o(w) hasa poleat (U Wr).

In our casethe condition can be rearrangedsoas to makethe vibrational parametersexplicit. Note
that (4.57) can be written in the form

1 2I+1+(I—1)a~/E1a
3a~ 6 460

a,(w) — 3laea2t2 ae (ae + a~)w~— a
5w

2 ~ ( . )

Puttingthis in the expression(4.21) for the elementsof the matrix Mm we see that the matrix is the
same as that for a dielectric sphereexcept for the 1, 1 elementin the upper left-hand corner. If
thereforein theexpression(4.22) for A

1,0 we expanddet(M°)accordingto elementsin the first row, we
readily seethat

2
—1 e —1 a~_____________________[Aio(w)] = [Aio(w)] — — (ae + a~)w~—aeW

2’ (4.61)

whereA~,o(w)is the generalizedelectronicsusceptibilitycorrespondingto just theelectronicpart of the
molecularresponse.That is, A~,o(w)is obtainedfrom (4.22)in which in the matrix elements(4.21) the
quantity 1/a, is given by the first term in (4.60), correspondingto a~= 0. The advantageof this
rearrangementis that A~.o(w)is a slowly varying function of (U [its frequencydependencecomesonly
from the metal responsedescribedby the FL(u) in (4.21)] with no sharp structurenear (U = W~.

Thereforein the condition (4.59), and providedWr is near u~,we can replaceA~,o(Wr)4A~,
0(w~)and

solve explicitly to find

= w~{1+ (av/ae)[1 — A~o(w~)/a~]}. (4.62)

The real part of Wr is interpretedas the shifted vibrational frequency,the imaginary part as the
half-width. Providedthe shift is smallwe obtainfor the relativeshift the expression

h~(U/Wv Re{w. — w~)Iw~}(av/2ae)Re{1 — A!,o(wv)Iae}, (4.63)

andfor the relativehalf-widtht

‘yI2w~ —Im{Wr/wv} (a~/2a~)Im{A~o(w~)}. (4.64)

t Here y is the decay rate which is also the full-width at half maximum of the resonance. In ref. [77]this same symbol wasused for the
half-width.
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A specialcaseof theseresultsis that in which finite molecularsize is neglectedand the molecule is
treatedas point-like with polarizability given by (4.1). Settinga~= 0 for 1> 1, we find from (4.22)

[A~,o(w)]~= ~ -~—F~(w,d) (point model). (4.65)

a~ 61

Puttingthis into (4.63)and (4.64) we get

I F2(w~d) 1 y I F2(w~, d) 1—a~Rei ~, — a~Imi (point model). (4.66)
let — 2a~F2(w~,,d)j 2w~ 1Et — 2aeF2(WV,d)j

It is of interestto comparethisexpressionfor thewidth with the correspondingexpressionfor the decay
rateobtainedin chapter3. Accordingto generalprinciplesthe two shouldbethe same[1].To makethe
comparison we first should drop the term involving F2 in the denominator of (4.66) since that
correspondsto a renormalizationof the fluctuatingdipole momentdue to imagefields from the metal,
which was neglectedin chapter3. Then we get the sameresult if in the relation(3.25), i.e., ‘y = ~P/hw,
we use the quasistaticexpression(3.22) for the power dissipated and provided we put ~ = 0 and
p.j = 2hWVaV. This last identity is obtainedif we interpret p.~as twice the quantumtransition dipole
momentfrom the first excitedstateto the groundstateof the oscillatorcorrespondingto the vibrational
mode, i.e., ~ = —2e(h/2mwV)

112, and interpret a~as the correspondingstatic polarizability of the
oscillator,i.e., a~= e2/mw~. Thus the apparentlyverydifferent methodsof this chapterandof chapter3
do indeedgive identical resultsfor the decayrates.

If we furtherspecializeto representthe metal as a medium with a local dielectric constant62(W),

then, still in the quasistaticapproximation,ru’
2 = (62— 61)/(62+ Ei) and F2 = ru’2/8d

3. The results(4.66)
then become

1~W/WV —1a~Re{(e
2— e1)I[461(82 + ei)d

3 — ae(62— Ei)]}

~ Im{(e
2 — e1)/[461(62 + ei)d

3 — aefr
2 — Ci)] (point model, local metal). (4.67)

This result for the shift reducesfar from the surfaceto the simple result (4.4a) if we take 62 =

correspondingto a perfectreflector, andset e~= 1.
In fig. 20 areshownnumericalresultscalculatedon the basis of the expressions(4.63) and(4.64) and

plotted vs. the molecularseparation.The metalreflectivity was calculatedusing the SCIB model with
the Lindharddielectricfunction, as describedin chapter2, i.e., using(2.30) in (2.39).The distanced is

from the centerof the sphereto the infinite barrier.The parameterschosenwere thoseappropriateto
the caseof CO adsorbedon Cu. For the moleculethe parametersare ac= 2.6A

3, aV = 0.16 A3 and
= 2143cm1 [79,80]. The radius a was chosento be 1 A. For the metal the parameterswere

determinedas follows. From optical (infrared) data [81] e,. = 6.5 and w,, = 8.73eV were determined
from a least squaresfit to the form e(w) = — ~ The electronscatteringrate hi’ = 0.05 eV was
determinedfrom more recentoptical data [82]. The Fermi wavevectorwas determinedfrom the
electrondensityof Cu using kF = (3ir2n)1”3 = 1.36A~.The Fermi velocity was determinedfrom the
slope of the calculatedconductionband [83] at the Fermi surface,VF = (d~’/dk)kkF = 0.008c. The
results using theseparametersare shown in the curves labeled 6b = 6.5 in fig. 20. The results are
insensitiveto thechoiceof r’ andkE. On the otherhand,theyarestrongly dependentupon the choiceof
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Fig. 20. Resultscalculated using the SCIB model for the electromag- Fig. 21. Calculated results for the shift and broadening from various
netic shift (~w)andbroadening(y) of CO on Cushowing the effectof models. The solid curve is the Eb = 6.5 curvefrom fig. 20. The dashed
thecore polarizationterm E~.Themoleculeis modeledas adielectric curveis for alocal metalwith a point-like molecule.Thedottedcurve
sphere, andthe metal parameters are given in (he text. After ref. [77]. is for a nonlocal metal with a point-like molecule but neglectingcore

polarizationandimageeffects.After ref. [77].

6b~To showthe importanceof this choice, resultsfor r,, = 2.4 and 6b = 1 are alsoshown. The choice
= 2.4 correspondsto using the Clausius—Mossottiformula, (Eb — l)/(Eb+ 2) = 4irna/3,wherefor Cu

theion coredensityn =41(3.61A)3 while the ionic corepolarizability is chosento be thecubeof the ion
core radius, a = (0.96A)3 [84]. The choice 6b = 1 correspondsto a jellium model with no core
polarization.It is clear from theseresults that the jellium model gives predictionsfor the shift and
broadeningwhich arevery different from thosecorrespondingto a morerealistic choiceof 6b In this
connectionwe shouldemphasizethat, althoughthe plots in fig. 20 arecarriedout to ratherlargevalues
of d, finite molecularsize hasbeentakeninto accountandthemoleculeshouldbepositionedso asto be
nearly touchingthe surface,i.e., nearthe left-handsideof the plot.

In fig. 21 the shift andbroadeningareplottedin the sameway as in fig. 20,but now the purposeis to
show the dependenceupon finite molecularsize and nonlocalmetal response.The solid curvesare a
repetitionof the 6b = 6.5 curvesfrom fig. 20, correspondingto a finite-sizemoleculeabovea nonlocal
metal.The dashedcurvescorrespondto apoint moleculeabovealocal metalwith the sameparameters,
i.e., as calculatedfrom (4.67) with e~= 1 and 62= E’,— (~.)~Iw(w+ iv). The curvescorrespondingto a
point molecule abovea nonlocalmetal, i.e., as calculatedfrom (4.66), are not shown since to do so
would clutter the figure. They would lie very closeto the solid curvesfor d> 1.1 A, while for smallerd
theywould continuesmoothly,moreor less parallel to the dashedcurves.The first and moststriking
conclusionfrom theseresultsis that finite size effects arelarge andthat they disappearrapidly as the
moleculeis movedaway from the surface.Recall that the radiuschosenis a = 1 A, so that theleft-hand
side of the plots correspondsto the molecule (sphere) just touching the surface. Thus when the
molecule is removedonly a fraction of its radiusfrom the surfaceit appearsto be point-like. This is in
contrastto the effects of nonlocality in the metal,which persistto muchgreaterdistances.As pointed
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out in chapter3 and demonstratedin the calculationsshown in fig. 8, nonlocal effects are important
even when the molecule is several tensof angstromsfrom the surface.In this connectionwe should
remark that the rough agreementof the solid and dashedcurves for d ~ 1.1 A stems from the
correspondingagreementof the reflection coefficientsfor the local andnonlocalmetal,which aspointed
out in our discussionof fig. 4 in section3.2, is misleading.The physicallycorrectdescriptionof themetal
in the region depictedby fig. 21 is thenonlocalone.Finally we remarkupon what wecan call the image
divergenceof the shift, which for the naivemodel of a point-like moleculeabovea perfectly reflecting
metal occursat d = (ae/4)113, as we seefrom (4.4). The inclusion of dampingin the metal reducesthis
divergenceto apeakat moreor lessthe sameposition.But in fig. 21 this peakin the dashedcurve is out
of sight to the left, the part of the curveshownis only rising slowly towardthe peak.On the otherhand
the solid curvesin fig. 21 rise rapidly as the moleculeis brought closeto thesurface.This is the residue
of the imagepeak,much reducedbut brought to a position just outsidethe metal surfaceby the finite
size of the molecule.

The dottedcurve in fig. 21 is calculatedfor a point-like moleculeabovea nonlocalmetalbut with the
neglectof imageeffects, i.e., droppingthe term involving F

2 in the denominatorof (4.66). The metal
was describedby the jellium model with the sameparametersas in the curve labeledEb = I in fig. 20.
The purposehere is to show that calculations based on these approximations[15,85] seriously
underestimatethe broadeningandshift, in particularwhen the moleculeis nearthe surface.

In fig. 22 a comparisonis madeof calculationsbasedon the SCIB andQIB modelsto describethe

102. , I
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QtB
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>
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t.O~’’i~52.o
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Fig. 22. Comparisonbetweenresultscalculatedwith theQIB model (solid lines) andthe SCIBmodel (dashedlines) for theshift and broadeningof
CO on afree electronmetal with no core polarization.Themolecule is modeledas in figs. 20 and21. The distanced is measuredfrom the infinite
barrier.
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metalresponse.Finite molecularsize was takeninto accountas describedabove,i.e., the calculations
werebasedon (4.63) and (4.64) with ae= 2.6A3, a~= 0.16A3 andw~= 2143cm~.For the QIB model
the reflection coefficient was calculatedas describedin section2.3, for the SCIBmodel (2.39)was used.
In eithercasethe parameterschosenwere thoseof a collisionlessfree electrongaswith the densityof
Cu: 6b = 1, v = 0, hw~= 10.8eV, kF = 1.36A1, and e~= 1. The results are unexciting, as could have
been anticipatedfrom the correspondingcurveslabeled 6b = 1 in fig. 20. The SCIB model predicts
systematicallylargershifts andbroadening.But this is a reflection largely of the fact that the effective
edge of the electron density for the QIB model, the jellium edge, is inside the infinite barrier at
d = —37r/8kF —0.9A. If the solid curvesare translatedto the right by this distance,they lie close to
the dashedcurves.We haveseenthisphenomenonearlier in connectionwith fig. 9. Thus we conclude
that, after this adjustment,thereis little reasonto preferthe QIB modeloverthe SCIB model. In view
of the importanceof the boundelectroncontribution6b, which can be includedin the SCIB model,we
would arguethat it gives overalla moreaccuraterepresentationof theessentialphysicsof this problem,
this despitethe fact that it doesnot realisticallydescribethesmoothtransitionof the electrondensityin
the surfaceregion.

Therehavebeenrecentcalculationsof the broadening,basedon methodsof the typedescribedin
section2.4, for a free electrongaswith a Lang—Kohn [86] electrondensityprofile in the surfaceregion
[85,87]. The predictionsare not muchdifferent from thoseof the QIB model. Again, becauseof the
importanceof the boundelectronresponse,we feel that the SCIB model is to be preferredover these
more elaboratecalculations.We shouldmakeclear that theseremarksapply to the caseof non-free-
electronmetalsat optical andinfraredfrequencies.

4.4. Othercontributionsto the shift

In this section we discussother contributionsto the shift and broadeningand makea comparison
with experimental results. Since our primary purposein this article is the discussionand critical
examinationof the electromagneticinteractions,our remarksherewill be brief, althoughwe shall try to
makethemself-contained.We first considerthe mechanicalcontribution to the shift, dueto the binding
of the moleculeto the metal. We then considerthe effectsof the zero-pointmotion of the moleculein
the binding potential.Finally we makesomeremarksaboutthe chemicalshift, due to changesin the
molecularbond orbitals, andthen give a brief comparisonwith someexperimentalresults.

The mechanicalshift arisesbecauseof thebinding of the moleculeto the metal surface.To illustrate
how it is calculatedwe considera simplevibratormodelcorrespondingto the caseof CO bondedin an
uprightorientationto a metal surface.This is shown in fig. 23, wheremc is the C mass,m

0 the0 mass
andM the massof a metalatom or complexof metalatoms.The force constantk is assumedto be the

9~?~’mo

Fig. 23. Coupled massand spring model used to calculate mechanical shifts.
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sameas that of the free molecule,while the adsorptionforce constantka is presumablyweak. The
normalmode frequenciesare rootsof the secularequation[88]:

~ fmomc mc+M \ 2 mo+mc+M
k+ kai~ + kka0. (4.68)

\momc m~M / mom~M

The vibrational frequencyWV of the free moleculecorrespondsto ka = 0,

/ + t/2
mck~ . (4.69)

momc /

For nonzeroka therewill be two roots, w+ and W_, which satisfy

2
2m0+mc mc+M 2 2_mo+mc+MW÷+W_ k+ ka, (~)~W— kka, 4.70

momc m~M m0m~M

andwhich we choosesuch that w÷> W_. Now if the force constantka is small, correspondingto weak
bondingto the metal, the frequencyw~will be nearWV while w_ will be small. The relation between
thesethreefrequenciesis obtainedby using(4.69)andeliminating ka betweeneqs. (4.70).The result can
beput in the form

(w~— W~)/w~= moMw~/[mc(m0+ mc + M)w~— (m0 + mc)(mc+ M)W~]. (4.71)

The point of this relationis that the frequenciesw~,the vibrationalfrequencyof the free molecule,and
w_, the low frequencyof the moleculebouncingagainstthe metal,can be measured,which allows one
to predict the shiftedfrequencyco÷in terms of measuredquantities.For the caseof CO adsorbedon
Cu(100)the measuredvalueW_ = 343cm

1 [89].Then with mc= 12, m
0= 16, andM= ~, correspond-

ing to themoleculebeingbondedto a large metalcomplexin thesurface,we find w÷= 2182cm’. If we
takeM= 63 or 65, correspondingto the moleculebondedto a single Cu atom,we find w÷= 2170cm_t.
The mechanicalshift is therefore

(0÷— ~,,, = 33 ±6 cm~. (4.72)

Another effect of this mechanicalmotion that must be consideredis the zero-pointmotion of the
moleculebouncingagainstthe surface.Although this effect doesnot itself causea shift, it doesmodify
the electromagneticshift. In the approximationof weakbinding, i.e., ka small, and the massM large,
this motion correspondsto that of a single mass m0+mc oscillating with frequency W_. The
correspondingmeansquareamplitudeat temperatureT is

= h coth hw (4.73)

2(mo+mC)W 2kBT

At room temperaturek~T= 25 meV, andfor the aboveparametersof CO adsorbedon Cu we find_ 0.05A. (4.74)
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In principle the electromagneticshift and broadeningas calculatedin section4.3 should be averaged
over thissmall amplitude.The changein the predictionsis quitesmall.

The chemicalshift is the shift arisingfrom changesin the bondingorbitals upon adsorption.In terms
of the picture of fig. 23, usedto describethemechanicalshift, onewouldexpectthat thebondingto the
metal representedby the force constantka would alsochangethe force constantk from its valuein the
free molecule.This would give rise to a correspondingchange(shift) in the frequencyW~,given by
(4.69). Providedthis shift is small it can be addedto the mechanicalshift, andthe two in turn addedto
the electromagneticshift. There is good evidencefrom experimentson isotopic varietiesof copper
carbonyls[90]that this pictureof achemicalchangein bond strengthtogetherwith amechanicalshift as
given by (4.71)is consistent.

We now makea brief comparisonwith experimentalresults,the purposebeingto showhow, in our
opinion, thesecalculationsshould be used.First, the broadeningshould be of electromagneticorigin.t
The observedwidth for CO adsorbedon Cu is y 12—24 cm’, or YI2WV 3—6X i0~[91]. Comparing
with the 6b = 6.5 curve in fig. 20, we see that this width can befitted if d 1.03A. Thenfor this value of
d, L~WIW~—0.1, or = —200cm~.This shift addedto the mechanicalshift (4.72) of about+35cm1
and an unknown chemical shift is to be comparedwith the experimentalshift [92,93] of about
—60 cm~.We find thereforethat thechemicalshift shouldbeabout+65cm~.This positivevaluefor the
chemicalshift is surprising,since one would expectbonding effects to weakenthe bond, leadingto a
negativechemicalshift. Indeed,theexperimentalevidenceon coppercarbonyls[90] suggestsa chemical
shift of about—160cm~.The conclusionwe drawfrom thisis not that the electromagneticcontribution
to the shift is absent,but that the observedwidth is probably due to inhomogeneousbroadening,
correspondingto CO adsorbedon avariety of siteson themetalsurface.In addition, thebondingin CO
adsorbedon copperis probably muchdifferent from that in coppercarbonyls.We trust that this brief
and rough comparisonwith observation,which is about all that can be justified by the experimental
results,has shown the use to which the calculationscan be put. In fact a good bit of insight has been
gained.The electromagneticcontributionto the shift andbroadeningis significant.The observedwidths
can be fitted, but it is probablethat the true homogeneouswidth is rathersmaller, correspondingto a
less closely boundmolecule. It is clear, however, that the electromagneticshift and broadeningare
related,andthat both mustbe takeninto account.

4.5. Coveragedependence

We concludethis chapterwith a brief discussionof the effectsof surfacecoverageon the shift and
broadening.Our primary goal is to show how to incorporatethe results of the previoussections,
involving finite-sizemoleculesand nonlocalmetals, into calculationsof the coveragedependencethat
havepreviously only consideredpoint moleculesor local metals[66,67]. The effect we are concerned
with arises from the electromagneticinteractionsbetweenthe moleculeson the surface.It is often
referred to as dipolar coupling, since the interaction is dominatedby the nearfields of the dipoles.
When the coverageis so low that the meanspacingof the moleculesis comparableto the wavelength,
which would requireincluding retardation,the interactionis negligible.For thesenearfieldswe can use
the quasistaticform, as calculatedin section4.1. On the otherhandtheinterestis in the caseof at most
moderatecoverage,so that the meanspacingof the moleculesis large comparedwith the molecular
size.This meansthat we can determinethe fields from the potential (4.5) evaluatedin the asymptotic

tBroadening due to phonon emission asthe molecule bouncesagainst the surfaceshouldbe negligible [77].
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region of largep. This we do in the next paragraph,wherewe show that asymptotically the potential
(4.1) becomesthat of the dipole plus its imageas calculatedin the local approximation.Then, after
making some remarks on this result, we discuss the coverage dependencedue to such dipolar
interactions.

The potential(4.5) can be written “I = —E
0- r + ~ind, where ~‘~ind is the potentialdueto the induced

chargesin the metal andin the molecule.Using (4.12),we write ‘~indin the form

~ind(T) = ~t m~iBirn { rY’Pr(cos 0~)exp(im~t)

+ ~ J dpr~(p)p~exp[ip ~p - p(z + d) + im~i}. (4.75)

We want to evaluatethis for p large, in whichcasethe integral in eachterm is dominatedby the region
nearp = 0 in the integrand.We may therefore replacer~2(p)—s’r~’2(0) in the integrals and use the
identity

P~(cos02) exp(imq51)= Jdpp~’exp[ip - p - p(z + d) + imq~], (4.76)
r2 i~( m).

where,referringto fig. 18, r2 = p + (z + d)i = r, + 2di is the vector going from the imageof the sphere
centerin the metal to the field point.This identity is, so to speak,the complementof the identity(4.10)
andis derivedin the sameway. With this we obtain the asymptoticformula

~I~d(r) ~i m~i B1m [r7’
2P r (cos0~)exp(im~

1)+ r~(0)(_)I±m÷1r~’~
2P~(cos 02)exp(im~

1)],

(4.77)

which is valid far from the molecule and abovethe metal surface.The leading terms are thosewith
= 1, andthesecan be expressedin termsof the dipole momentexactly as in (4.23). The result is that

we find

+ (s’. r2)/e,r~, (4.78)

whereji is the dipole moment inducedin the molecule,given by (4.24),and

~.t’= r~’2(0)[2~z.i~—z] (4.79)

is the imagedipole. Here,as we haveseenin our discussionof the long-wavelengthlimit in section2.4,

r’i’2(0) = (62— 61)/(62 + 61). (4.80)

As a refinement of this result we can take into account the first-order correctionsto r~’2, given by
(2.122),by putting the correctionsin the form of an exponentialto write
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P _ P 1 Eldlj+62d±1
r12(p) r1~(0)expj —2p ~. (4.81)

6~ 62 i

Using this in the integralsin (4.75) and repeatingthe subsequentargumentwe are again led to the
asymptoticform (4.78)with the imagedipole given by (4.79)but with

r2= ri+2(d+ 6~2~~)I. (4.82)

This simply correspondsto a refined definition of the position of the metalsurface.Note, howeverthat
d1 is in generalcomplex.

The result (4.78) is remarkablein thesensethat it saysthat far from the moleculethefield is thatof a
point dipole togetherwith its imagein a local metal.This despitethe fact that finite molecularsize and
nonlocalityof the metal are important in determiningthe dipole momentof the moleculeitself.

In this connectionwe shouldremark upon a recentpaperof Feibelman[21], who obtainsa result
similar in form to (4.78), and with a surfaceposition correctionidentical to (4.82). But Feibelman’s
result is for the field of a point molecule far from the surface,while (4.78) is for the field far from a
moleculewhich is itself closeto the surface.

Now we consider the effect of dipolar interactionsbetween adsorbedmolecules, leading to a
coveragedependenceof the shift andbroadening.The appliedelectricfield at the surfaceis assumedto
beslowly varying andof planewave form: E0 exp(ip . p). The positionof thejth moleculeis denotedby
a vectorR1 parallel to the surface.The dipole momentinducedin this moleculeis given by (4.24),

= A1,01 - E(R1)i + A1,1[E(R1) — I - E(R1)I], (4.83)

where E(R1), the total electric field seenby the fth molecule, is the sum of the applied field and the
dipolar fields dueto the other moleculesandtheir images,

E(R,)= E0 exp(ip - R~)+ ~ ~ . R.~kRJk— R~ik+ ~ - R~R~— R~i~) (4.84)
k�j jk jk

HereRi,, = R~— Rk is the displacementof thejth moleculerelativeto the kth moleculewhile

Rk = R1k + 2D2, D = d + (e,4~~+ e2d±)/(ei+ 62), (4.85)

is according to (4.82),the displacementof thejth moleculerelativeto theimageof the kth molecule.The
imagedipole momentji~= 21 ~.ikl — ILk, in accordwith (4.79).The equations(4.83) and(4.84) are to be
solvedfor the j~ç,.To do this we put

= ~(p) exp(ip - Ri). (4.86)

Theninverting (4.83) to expressE(R1) in termsof p~andusing(4.84)we get a singleequationfor ~.i(p)
which we can write in the dyadic form

(4.87)
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where is the unit dyadic and

S(p) = ~ exp(-p. Rjk)(3R1~~SR~1~3RkRç R~) (4.88)
k�j jk

The inversionof (4.87) to find an explicit expressionfor IL(P) is simple in principle (it is only a set of
three coupled equationsfor the componentsof ~)but clumsy in practicebecauseS is not diagonal.
However, for the casewhereE

0 = E01 is directednormal to the surface,which is the caseof greatest
interest, the result takesthe simple form

1
— ~, Eoz, (4.89)

IfJ-it,o ~
3zz

where

S~~(p)= — k�j exp(ip . RJk)(~—+ (R~+ 4D2)312— (R~+D2)5/2). (4.90)

In generalthis sum must be performednumerically.However, a simple caseof someinterest is that in
which the wavelengthis infinite (p = 0), correspondingto a uniform applied field, and the adsorption
sitesarefilled at randomwith a low densityn. In this casewe can approximatethe sum by an integral
andwrite

1 /1 1 12D2

S~~(0)—2irn j dRR + (R2 + D2)312- (R2 + D2)512

a (4.91)

= —2rrn(1/a + a2/(a2+ 4D2)312),

wherea is the nearest-neighbordistancefor the adsorbedmolecules.
The newvibrational frequencyfor theadsorbedlayer is given by settingthe denominatoron theright

sideof (4.89)equalto zeroand solving for W~using (4.61).The resultcan be written

= w~{1+ av/ae— aV/a~[A~o(wV)1 — S~~]}. (4.92)

Since A~,o(WV~’is generallypositive(this is what leadsto the negativevaluesof ~wIw shown in figs. 20
and21) and~ is generallynegative,the coverage-dependentpart of the shift will bepositive. This is in
the oppositedirection from that of the metal-inducedshift. A positiveshift of thevibrational frequency
with increasingcoverageis usuallyobservedfor CO on variousmetals,but not in all cases[68].

To demonstratethe use of the formulas derivedin this sectionwe nextestimatethe coverageeffect
for the exampleof CO on Cu(111)at a coverageof 0.1 of a monolayer.Referringto the 6h = 6.5 curve
in fig. 20 calculatedwith the SCIB model,we choosed = 1.3 A for which the electromagneticshift at
zero coverage is ~wIW~= —0.01. We ignore the imaginary part of A?,o(WV) and determine
Re{A~,O(WV)1}~0.29A3 from eq. (4.62). The Cu(111) surfacehasa = 2.55 A so that n = 0.018A2.
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assuminga monolayer is one CO molecule per Cu atom. For D we choose 1.5A, which yields
~ = —0.058A-3. The result is ratherinsensitiveto thechoiceof D, but in generalD shouldbeon the
orderof 0.1 to 0.3A greaterthan d, evenfor the SCIB modelwith a large 6b~Puttingthesevaluesinto
eq. (4.92)and comparingwith the result for zerocoverage(Sf

5 = 0), we find a +14cm
1 shift. We can

concludefrom this example that the magnitudeof the dipolar coupling shift at fractional monolayer
coveragesis similar to, but of courseof oppositesign from, the electromagneticshift on a baresurface.
At 0.5 monolayersa shift of +102cm1is not unreasonable.Themagnitudesof the coverage-dependent
shifts calculatedhere are comparableto those observedexperimentally [68]. However, direct com-
parisonsof such calculationswith experimentare complicatedby several experimentalrealities: the
adsorbedmoleculesmay tend to form islands; there may be a coverage-dependentchangein the
chemicalbonding; anddifferent atomic adsorbtionsitesmay becomefilled at higher coverages,which
could give abruptchangesin the shifts.

5. Raman scattering at metal surfaces

In thischapterwe considerthe problemof Ramanscatteringby moleculesat or neara metalsurface.
During the last decadeit hasbeenestablishedexperimentallythat a numberof moleculesadsorbedon
certainmetalsurfaceshaveRamanscatteringcrosssectionsexceedingtheir nominal valuesby as much
as 5 or 6 orders of magnitude.This phenomenonis referred to as the SurfaceEnhancedRaman
Scattering(SERS)effect. Its discoveryhasstimulatedmajorefforts to explain andto exploit the effect.
In particular it hashad an important impact on the field of surfacescience.Unlike most other surface
probes,such as inelasticelectronscatteringor Auger electronspectroscopy,which arerestrictedto high
vacuumstudies,SERShasthepotentialfor studyingmoleculesin avariety of interfacialenvironments:
metal—gas,metal—liquid, and metal—dielectric. It is sensitive to monolayer concentrations,and the
Ramanspectraare molecularspecific. Thus electrochemicalor catalytic reactionson a metal surface
could be monitoredin situ. Excellentgeneralreviews of experimentaland theoreticalwork on SERS
havebeengiven by Otto [94],Metiu [95], andVan Duyne[96], andin addition moredetailedreviews
arecontainedin the book editedby Changand Furtak [97]. We will not attemptto duplicatethose
reviewshere.Insteadwe discussseveralaspectsof SERSthatcan beunderstoodon the basisof classical
electromagnetism.Although thereis ampleevidencethat “chemical” effectsarealso neededto explain
SERS, the electromagneticeffectswe discussarealwayspresentandmustbe takeninto account.

In the first section of this chapterwe considerthe imageenhancementeffect on a smoothsurface.
Calculationsof this effect basedon the model systemof pyridine on Ag arepresented.In subsequent
sectionsweconsidereffectsproducedby rough or structuredsurfaces.

5.1. Imageenhancement

The imageenhancementeffect wasoneof the first mechanismsofferedas an explanationof SERS.In
its simplestform, as originally discussedby King et al. [98] andby Efrima andMetiu [99], the molecule
is treatedas a polarizablepoint spaceda distanced abovea metalwith local dielectricconstant62. An
appliedmacroscopicfield E

0 exp(—ioot) polarizesthe moleculeinducinga dipole moment~t exp(—i&0t).
This dipole hasan imagein the metala distanced below the surfacegiven by

ILimage [(62— 61)1(62+6i)](
2IL 11IL). (5.1)
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The imagedipole producesa field at the moleculegiven by

Eimage = (11861d
3)(3/.Limage — IL image), (5.2)

which alsopolarizesthe molecule.The net dipole inducedin the molecule is given by

IL(~o)= ai(Eo+ Eimage), (5.3)

wherea
1 is thedipole polarizability,which we taketo be a scalar.Solving theseequationsfor IL(Wo), we

obtain

a11-E01 a1(Eo—1-Eoi)
= 1— (ai/4e1d

3)[e
2(wo)— El]/[62(00) + e~]+ 1— (ai/8e1d

3)[e
2(wo)— 61]/[E2(WO) + Ci] (5.4)

The image enhancementeffect is associatedwith the near vanishing of the denominatorsin these
equations,which can typically occurfor distancesof 1—2 A.

We nextcalculate this effect for Ramanscattering.To simplify the discussionwe take the applied
field to be normal to the surface(E0 = E02). The Raman scatteringprocessis picturedas follows. The
applied field at w~,the pump frequency, inducesthe dipole moment IL(Wo) oscillating at the same
frequency.Due to the intrinsic nonlinearitiesof the molecularmotion, the free motion of an internal
vibrationalmodeof frequencyW~canmix with thisdrivenmotion at the pump frequencyto giveadipolar
motionat the RamanfrequencyWR = Wo — w~.lThedipole inducedatthe RamanfrequencyIL(WR) should
thereforebeproportionalto ~a(wo)withaproportionalityconstantCR,which in theabsenceof thechemical
effectsisassumedto be unchangedby the presenceof the metal.Therewill alsobe animagefield from the
Ramandipole at WR, thus in analogywith (5.3),

a1 62(WR) s~
~c(wR) = CR~L(Wtt)+4e1d

362(WR)+ ~ ~U(WR). (5.5)

Solving for /L(&R) andusing (5.4), we find

I a

1 C2((UO)~~ a1 62(WR)— ei1~
~(wR)=cRa1Eo[l_4Ed3E~)+Ej [

1~4 d3( )+j (5.6)

The Ramansignal is proportionalto lIL(WR)~2,whichfar from the metalis given by (cRalEO)2. Therefore

the gain G inducedby the surfacecan be written

— 1 — a

1 62(WO)

6~ —2 1 — a
1 62(WR) Cl

L1 1 3 1 3 .4e1d 62(WO)+ Ci 4e1d 62(WR)+ E~

Since the Ramanshift is small, the two factorsin this expressionare nearly equal,and the quantity G
will exhibit a narrow peakwhen plottedvs. d, whosemaximumvalue is given approximatelyby

t The dipole inducedat the sum frequencyw5 = wu + w~will he negligible as long as hw~~ kT.
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G — JRe[(62— 61)1(62+ c~)]~~max — Um[(62— 61)/(62+ )]J (5.8)

In the sameapproximationthe distancedmax at which the peakoccursis given by

dmax {~iRe(E2~~)}. (5.9)

Note that the explicit (0-dependencehasbeendroppedin thelast two equations,the assumptionbeing
that we may evaluate 62(W) at w0 or WR. For the caseof pyridine adsorbe~1on Ag in an upright
orientationtypical parametersare hwo= 2eV, 62 —19 + 0.67i, anda1 = 11.3 A

3, which yields Gmax=

5 x 10~at dmax= 1.46A. Allowing for the fact that the (0-dependenceof 62(W) preventsboth factorsin
eq. (5.7) from being resonantat exactly the samedistancereducesGmax to 2 x iO~for a 1000cm1
Ramanshift. This is still a very largenumber.

This simplestversionof the imageenhancementmodelcan be criticizedon the basisof its neglectof
severalimportantphysical phenomenaand its requirementof a precisepositioning of the molecule.
However,it is consistentwith the generaltrendsobservedfor SERSon various metals,which indicate
that metalswith smallerIm(6

2) show largergains.Thus, Ag showsthe largestSERSgains,Au andCu
show lessergains that decreasedrasticallyas the frequencyapproachesthe interbandabsorptionregion,
andtransitionmetalsshow little or no SERSgains.

We next consider the modifications producedby nonlocal effects, still treating the molecule as
point-like. Here we can use the results of chapter4. The expression(5.4) is the special case for
point-like molecules above a local metal of the general result (4.24). Similarly, if we interpret
cR~L(wg)Ia1as an effectiveappliedfield at Wg, we see that the solutionof (5.5) is also the samespecial
case.Moreover, the form of the generalizedsusceptibility A1~0for the case in which we are now
interested,apoint-like moleculeabovea nonlocalmetal, is given by eq. (4.65) in which we replacea~by
a1. Therefore,the result is to replaceexpression(5.7) for the gain by

G = 1 — 2atF2(wo,d)/eiL
2~1— 2alF

2(WR,d)/ei1
2, (5.10)

whereF
2(w, d) is given by eq. (4.17). In the sameapproximationusedfor the results(5.8) and (5.9),

Gmax= [Re(F2)/Im(F2)]
4and dmax is given implicitly by 2a

1Re[F2( o.i, d)] = Ei. The qualitativeeffects of
nonlocalityaretwofold.ScreeningreducesRe(F2) thusdecreasingGmax and dmax, while the introduction
of electron—holeexcitationsincreasesIm(F2), further reducingGmax. Theseresultsare summarizedin
fig. 24, wherewe shownonlocalpoint-moleculeresultsbasedon the SCIB modelon the left compared
with local point-moleculeresultson the right. Although therearesizablequantitativechangesbetween
the local and nonlocal resultsshown here,the essentialfeatureof a large narrow peakin the plot of
Gvs. d is preserved.

The SCIB calculationsin fig. 24 use
6b = 3.6 as determinedby fitting Ag opticaldata.The presenceof

a core polarization term of about this magnitude(or greater) is an essentialfeature of the metal
response.Only then does the imageenhancementpeakoccur at a physically reasonabledistance,i.e.,
d ? 1 A. The primary effect of the core polarizationterm is to providean unscreenedRe(r”) that does
not vanishas p —* ~. If thereis no corepolarization(6b = 1 = Si), then r” —*0 as p —* oo andthe position
for maximum gain becomesmuch smaller. For example, calculationswith the SCIB model for a free
electron gas (Sb = 1) with the sameelectron density and optical propertiesas Ag yield an image
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Fig. 24. ImageenhancementRamangain for apoint dipole. The curveson theright arecalculatedfor a local metalusing eq. (5.7), thoseon the left
for anonlocal metalusing the SCIB model with eq. (5.10). TheAg parametersarethesameas thosefor fig. 4. TheRamanshift is 1000cm~.After
ref. 1421.

enhancementpeakat dmax= 0.7A, which is too smallfor a moleculesuchaspyridine [43]. For the same
parameterswe havelikewise found that thereis no significant imageenhancementeffect in the QIB
model (which requires

6b = 1), as long as the moleculeis constrainedto be outsidethe infinite barrier.
We can also expectfrom theseresultsthat modelssuch as the one discussedby Feibelman[21] would
alsoshow very small imageenhancementfor pyridine outsidea free electrongas.

We now add finite molecularsize to the problem.Sincethe spacingsrequiredfor maximumgainare
comparableto the molecularsize,one wouldexpecton intuitive groundsalonethat finite size would be
important.The expressionfor the SERSimageenhancementgain is obtainedfrom the generalresult
(4.24) for the dipolar responseof a finite molecule.As indicated above,the expression(5.4) and the
solutionof (5.5) arespecialcasesof this generalresult.Therefore,using(4.24), the imageenhancement
gain for the caseof a finite moleculeabovea nonlocalsurfaceis given by

G = aj4~Alo(wR,d)Ai,o(wo,d)12, (5.11)

whereA
1.o(W,d) is given by eq. (4.22).Note that this equationis a generalresultexpressingthe image

enhancementgain in termsof the as yet unspecifiedreflection coefficientsfor the metaland multipole
polarizabilitiesfor the molecule.

In fig. 25 we showsamplecalculationsthat usethesameSCIBmodel for the metalas was usedin fig.
24,but that treatthe pyridine moleculeas eithera dielectricsphere(solid lines) or an infinite spherical
well (dashedlines). In both cases the dipole polarizability is 11.3 A

3. The infinite spherical well
“molecule” showsa gain closeto that of a point-like moleculeat the centerof the sphere.This is not
surprising, since for this model the higher multipole polarizabilitiesaresmall, as shown in fig. 19. The
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Fig. 25. ImageenhancementRamangain calculatedustngeq. (5.11) for a finite sized molecule modeledas a dielectric sphere(solid lines)or an
infinite sphericalwell (dashedlines). The SCIB model is usedand themetalparametersarethesameasfor fig. 24. TheRamanshift is 1000cm~.
After ref. [42).

dielectricsphere“molecule”, however,showsa dramaticchangefrom point-like behavior.The position
of maximum gain is pushedout andoccursjust outsidethe sphereradius,which meansthe sphereis
nearly touchingthesurface.The peakgain is reducedandthe gaincurve is substantiallynarrowed.It is
significant that the peakoccurswhen the moleculeis nearly restingon the surface,suggestingthat the
preciseplacementis not a problemfor real molecules.

An additionaleffect that now mustalsobeconsideredis the motionof the moleculein theadsorption
potential.We consideredthis effect in chapter4, where expression(4.73) gives the amplitude of the
motion. Typical measuredvibrational frequenciesfor this motion are ~a = 102 cm~,and, choosinga
massM = 102amu, the rms amplitude of the motion at room temperatureshouldbe (Az)112 0.08A.
This motion, beinglarger than the widths of the gain curvesin figs. 24 and25, relievessomewhatthe
burdenof preciseplacementof the moleculein thepoint-dipolecalculations.It alsomeansthe gain will
be reduced.For gain curvessuch as those in fig. 25 using spheresof radiusa = 1.6—1.8A (reasonable
values for pyridine), this amountsto multiplying the peakgain by the ratio of the width of the curveto
the width of the zero-pointmotion (2(Az2)”2). The resultingSERSgain is —iO~.Clearlythis is an order
of magnitudeestimate.Even so it is muchtoo small to explain the enhancementsof 105_106observed
for pyridine on Ag. We can concludethat theremust be additional effects contributing to the SERS
gainson Ag, eventhough imageenhancementmaycontributesignificantly.

Thediscussionso far hasconcentratedon Ag, which is the mostfavorablemetalwith regardto image
enhancement.Othernoblemetalsandthealkali metalsgenerallyhavelargerelectronscatteringratesii,

andmost transitionmetalshavelargeinterbandcontributionsto Im(e
2). In either casea decreasein the

imageenhancementgain is expected.Liquid Hg is an interestingcase,sinceit has beenreportedto
show SERSgains of 104_106[100],and,like Ag, it hasa significant core polarizationterm

6b andno
interbandabsorption[101].The primarydifferenceis that the electronscatteringrate is about20 times
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larger in liquid Hg. Figure 26 shows calculatedresultsfor pyridine on liquid Hg obtainedfrom the
nonlocal SCIB model for both a point dipole and a dielectric sphere[102].The dashedlines for Ag,
shown for comparison, are obtained using the same parametersas those for fig. 25, excepting
hW0= 2.41eV. These calculationspredict an image enhancementgain for liquid Hg of about 10.
Moreover, there are no roughnesseffects of the sort to be discussedlater in this chapterthat can
significantly increasethe Ramansignalfrom a moleculeon liquid Hg. It is thusa reasonableconclusion
that SERSgainsof 104_106on liquid Hg arenot consistentwith an electromagneticexplanation.

EesleyandSmith [103]havepointed out the possibilityof an additional imagefactor that shouldbe
introducedwhen the internal vibrational mode of the molecule is infrared active as well as Raman
active. In this casethe zero-pointfluctuationsof the vibrationproducean imagefield interactingwith it
at the vibrationalfrequencyW~. The result is an additionalfactorin eq. (5.7), whichis like the othertwo
but is evaluatedat w~.Oneproblemwith this new factor, aswe haveshownin the previouschapter,is
that, if thereis a resonantenhancementbetweenthe fluctuatingdipole andits image,then therewill be
an associatedlargefrequencyshift. Sinceobservedfrequencyshiftsof adsorbedmoleculesare typically
only a few percent,we do not expectthis additionalimageenhancementfactor to be important in most
cases.

Hilton and Oxtoby [104]haveincludedfinite molecularsize in a quantummechanicalcalculationof
the imageeffect. They do this by meansof a Hartreecalculation appliedto a hydrogenatom together
with its imageobtainedby reflecting thewavefunctionsin the surface.The maximumcalculatedincrease
in the effectivestaticpolarizability a~ffwas quitesmall (about a factor of three), andit occurredcloser
to the surfacethanit would havefor the simple point-dipolemodel. Fromtheseresultstheyconcluded
that imageenhancementwas not important in SERS.However, evena factor of 3 in aeff givesa SERS
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Fig. 26. ImageenhancementRaman gain calculated using the 5CIB model for liquid Hg (solid curves).The parametersare hw5= 10.6 eV,
= 1.34 X 108cm~,VF = 1.55 x io~crn/s, e5= 2, hv = 1.37 eV. a~= 11.3A

3. and a 1000cm’ Ramanshift. The dashedcurvescorrespondto Ag.
The curveson the right arefor a 1.6 A radiusdielectricspheremolecularmodel. After ref. 11021.
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gain of 102, which is significant. It is clear from their calculationsthat a quantummechanicalmodel of
the moleculewill leadto a reductionin, but not necessarilyan elimination of, the imageenhancement
gain.

We would like to conclude this section with a definite answer as to whether or not image
enhancementis important in SERS. That image enhancementexists is not in dispute. Maxwell’s
equationsdemandit. The real questionis whetheror not it gives a large effect for realisticspacingsof
the molecule from the metal. In the most favorablecase,the SCIB model applied to Ag with a core
polarizationterm, the estimatedmagnitudeof the effect is 10g. This valuewill dependonly weaklyon
the frequency,sincethereis an automaticpositioningof themoleculeat the distancefor maximumgain.
Free electron models that neglect core polarization do not generally give large SERS gains at
reasonabledistances.On theotherhand,in our discussionwe havetakenthe molecularpolarizabilitya1
to be a real, frequency-independentconstant.This is a goodassumptionas longas thepump frequency
W~ is small comparedwith the frequency~e of thefirst electronicexcitedstateof themolecule.If thisis
not the casethen we havethe possibilityof resonantRaman scattering,andwe must take a1 to be of
the form

ai(W) = a~(c~)+ [a1(0)— a1(cx)]W~/(w~— (02 iwF). (5.12)

In this case,whenF is small, we expectlargeimageenhancementsat reasonablespacingswhen Wo is in

the narrow frequencyrangearoundWe. This will be true for any of the modelsof the metal response
describedin chapter2, with or without core polarization.The difficulty with ascribingSERSgainsto
resonanceRamanof this sortis that thereis in most experimentsno indication of a narrowresonancein
the SERSexcitation profile, nor does the free moleculeshow any electronicabsorptionat the pump
frequencyfor which the SERSgain is greatest.We can concludethat, while thereis no convincing
experimentalevidenceeitherfor or againsttheimageenhancementeffect, it may in certaincasesmakea
significant contributionto the SERSgain.

In the following sectionswe discusselectromagneticenhancementeffectsthat arisefrom macroscopic
modificationsto the shapeof the surface,such as randomrougheningor gratingsbeingruled onto the
surface.The scalefor such modificationsis from many tensto several hundredangstroms,i.e., much
greaterthan atomic dimensionsbut also muchsmaller thanthe wavelengthof light. The imageeffects
describedin this section involve the shapeof the metalsurfaceon an atomic scale,1—5 A, andthus will
be unchanged.This means the factors associatedwith image enhancementwill multiply whatever
subsequentgain factorsthat result from structuralsurfacechanges.The major differencebetweenthe
imageand the roughnesseffects is the rangeof the interaction.As is clear from figs. 24 and 25, the
rangeo~imageenhancementis at most a few angstroms.In contrast,the rangeof roughnesseffects is
10_102A.

5.2. SERSfrom metalgratings

We nextconsiderthe effectson SERSoccurringwhenthe metal is roughenedin a very specialway,
namely,by the ruling, usuallyby photolithographictechniques,of a periodic grating onto an otherwise
smooth surface.There have been several experimentalinvestigationsof SERS from metal grating
surfaces[105—107]andnumeroustheoreticaldiscussionsof the problemas well [108—111].The primary
effect can be associatedwith the resonantexcitation of propagatingsurfaceplasmonson the metal
surfacethroughfirst-ordercouplingof the incidentbeamwith the grating.The SERSsignal is observed
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to increasedramaticallywhen the condition for surfaceplasmonexcitation is satisfied,

Ip±gI=psp, (5.13)

wherep is the projectionof the incidentwavevectoronto the surface,g is a reciprocallatticevectorof
the grating,andPsp is the surfaceplasmonwavevectorgiven by (3.19). The vector g is in the surface
plane, perpendicularto the grooves,and its magnitudeis a multiple of 2ir/D, where D is the groove
spacing.

The increasedSERSsignal comes aboutbecausethe optical electric field in the surfaceplasmon
mode can be muchlargerthanthat in the incidentbeam.Whencondition (5.13)is satisfiedthereis also
a narrow dip in the reflectivity of the specularbeam. The situationis completelyanalogousto the
attenuated-total-reflection(ATR) dip observedin prism excitation of surfaceplasmons[112]. An
increasedSERSsignal hasalsobeenobservedfor the caseof prism excitedsurfaceplasmons[113].Our
aim is to calculatethe field enhancement.For prism excitation the field enhancementis given by a
simple applicationof the multilayer Fresnelformulas [5]. For gratingexcitationexactcalculationsof the
field enhancementare much more difficult and require a knowledgeof the depthand profile of the
grooves[114].Below we outline an alternativemethodbasedon energyconservationthat is useful in
mostof the interestingcases,i.e., those in which the enhancementis large [115].

Considera P-polarizedoptical beamincident on a metal surfaceas shown in fig. 27, such that the
vectorsk, p, andg lie in the xz plane,andassumethat the resonancecondition is satisfiedresultingin a
surfaceplasmon propagatingin the x direction. Since we are interestedin caseswith large enhance-
ment, we assumean optimized grating on a high reflectivity metal. This requires that the radiation
dampinginducedby the gratingmatchesthe intrinsic dampingof the surfaceplasmonmode. Since,by
assumption,the intrinsic damping is small, then the optimized grating will representonly a small
perturbationto the smoothsurface,andwe can representthefields for themode with thoseappropriate
for a perfectly smoothsurface.The only place this assumptionbreaksdown is at the zoneboundaries
(psp g) of the reciprocallattice spaceof the grating,wheretiny band gaps in the wvs.Pspcurve are
introduced[116].

The surfaceplasmonsare P-polarizedwavesassociated,as we saw in section3.2. with the vanishing
of the denominatorin the Fresnelformulas(2.6). When the denominatorvanishes,the ratio of t~’2to r~2
is unity. Therefore,the form of the fields in the surfaceplasmon mode is obtainedfrom the general
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Fig. 27. Schematicdiagram showingtheexcitationof a surfaceplasmonwave via a gratingon a metal.
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form (2.9) and(2.10) by droppingthe incidentwaveandsetting r~’2= t~= 1, i.e., absorbingrV2 into the
arbitraryamplitude B~.The fields in the mode arethusgiven by

~ = ~ exp{i(pspx— ~ (5.14)

E — c . f(qi~—psp~)exp(iqiz)Iei, z>0, 515— —Br exp{1(pspx— Wt)}~(_q2~ — Psp~)exp(—iq2z)/s2, z <0,

wherethe Qj aregiven by (2.8) andPsi’ by (3.19). The time averagedpower flow in the modein the x
direction perunit length in the y direction is given by

~sP=~ J dzRe{E5~XB~p}-I, (5.16)

which using(5.14) and(5.15) can bewritten

~SP = j~ Iq~
2+I;s~2Re(p

5pIs1q~’+ psp/62q’~), (5.17)

whereE5p~O~)is the electricvector just outsidethemetalsurfaceandq’ is the imaginarypartof q1. (For
brevity in the remainderof this chapter the real and imaginary parts of a complex quantity will be
denotedby primeanddoubleprime, respectively.)The powerper unit areadissipatedin the metalby
the mode is given by

—d~P~~/dx= a~sp (5.18)

wherea = 2p~~is the powerattenuationcoefficient of the mode.The net poweraddedto the metalper
unit areaby the externalbeamis given by the differencein intensitiesof the incident and reflected
beams:

— = cs ~2 cos 01E01
2(1— R)/8Tr, (5.19)

whereE
0 is the electricvector in the incidentbeamandR is the powerreflectivity. Under steady-state

conditionsthe right-handsides of eqs. (5.19) and(5.18) mustbe equal,and using(5.17) we obtainthe
following expressionfor the field enhancement,

lEsp(0~)I
2 s~3”2cos0(1—R){~g

1~
2+Ips~l2} (520)

IEoI2 — (w/c)p~’pRe{psp/s
1q’i’+ psp/62q’~}~

We now makeuse of the assumptionthat we are dealingwith a good metal for which s~—e~and
6~> e~.This allows us to expressthe result in termsof the dielectricconstants,

lEsp(0~)I
2/lEo~2= 2 cos0s~2(1— R)/s1i/2s?~(.s — 6 i)u/2. (5.21)
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A similar equation,which is nearly the samenumerically,hasalsobeenderivedon the basisof energy
conservationfor a prism coupler[117].

With a truly optimum grating zero reflectivity canbe achievedwhen the reradiatedbeamfrom the
surfaceplasmonexactly cancels the specularreflection. We can thus set R = 0 in (5.21) to obtain an
upperlimit on thefield enhancement.Calculatedresultsfor thisupperlimit areshown in fig. 28, where
we have used a grating spacingof 800 nm and assumedfirst order coupling from the grating, i.e.,
sin 0 = {s~I(1 + ~~)}h/2 — Aid. The lines in this figure are drawn through points calculatedfrom optical
dataappropriatefor smoothfilms exposedto air [81].

The large electric field enhancementrepresentedby (5.21) arisesfrom a simple focusing effect. A
planewave that is extendedin two directionsis compressedinto a surfacewave extendedin only one
direction.The maximum increasein intensity in the surfacewaveis given approximatelyby the ratio of
the distancealongthe surfacethat contributescoherentlyto thewave,which is (2p~)1,to thespreadof
the wave in the z direction, which is (2q~)~,neglecting the field in the metal. This gives the
approximateformula

E ~g~±\ 2~ 2 ._.. i, .-.... ‘~/_ #\1/2j — \j 1/2
~ ., , = ~ — .e4. £2) ~,62 Ci)i6 1 62,

which is valid whenever—6~~ 6~,in which caseit yields resultsdiffering only slightly from eq. (5.21).

Equation (5.21) with R = 0 providesan upper limit to the field enhancementfor a perfect grating,
i.e., 100% coupling efficiency. It can also be used to estimatethe actual field enhancementfor less

efficient coupling in casesfor which only one diffracted beamneedsto be considered.Yamashitaand
Tsuji [108] haveshown for this case,through detailedcalculationsand comparisonswith the experi-
mentsof Hutley and Maystre[118],that the formula (5.21) gives accuratelytheir calculatedvaluesfor
the field enhancement.This meansthat the enhancementin a particularexperimentcan be determined
using (5.21) with the measuredR value, and it is not necessaryto know the depth or profile of the
grooves,quantitiesthat mustbe known in order to use the moredetailedcalculations.

The grating can also influencethe radiation by the moleculeat the Raman shifted frequency.The
primaryeffect hereis that radiationemittedby the dipole into surfaceplasmonswill be coupledout by

IO~ I I ~fl

Fig. 28. Maximum field enhancementsquared(R = 0) calculatedfrom eq. (5.21) for a gratingwith an 800nm spacingon Ag, Au, and Cu surfaces.
After ref. [1151.
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the grating.This will leadto a net increasein the total SERSsignal,which can beestimatedfrom plots
such as thosein fig. 6. Therewe seethat the poweremitted into surfaceplasmonsexceedsthat emitted
into photonsby only a factor of 2—3, andonly for a I dipole. This meansthat the grating-inducedgain
associatedwith the emission is at most a factor of 2—3. On the other hand the emission will be
concentratedin very narrow angularranges,as determinedby the condition (5.13), within which the
power emittedper steradiancan be as much as __102 greaterthan it wouldbe without the grating.

We haveshown in this section that a grating on a high-reflectivity metalsuch as Ag can producea
maximum SERSincreaseof several hundred.The effect is long range (the moleculescan be several
hundredangstromsfrom the surface),it is not molecularspecific, and it is primarily a one-wayeffect,
i.e., only the incident field is enhanced,not the emitted field. Gratingenhancementsof the magnitude
indicatedherehavebeenobservedexperimentally[105,106], but theyarefar below the 105_106SERS
gainsoften seenon randomlyroughenedsurfacesfor which, as we will show in thefollowing section,no
significant enhancementsdueto the excitation of propagatingsurfaceplasmonscan be expected.

5.3. Random roughness

We now considera randomlyroughenedmetal surface,but we specificallyexclude the possibilityof
resonantmicrostructures.The resonanceeffect is discussedin the nextsection.The type of roughness
we havein mind hereis randombumpsof height50—100A with a spacingbetweenbumpscomparable
to the bump height. Sincethe translationalsymmetryof the surfacehas beenbrokenby the roughness,
therewill be Fourier componentsof the surfaceprofile for which the condition (5.13) is satisfied.This
meansthatpropagatingsurfaceplasmonswill be excitedby theincidentbeamin muchthe samemanner
as by a grating. It hasbeensuggestedthat this maycontributeto the SERSgain [119—121].

For the purposeof assessingthe importanceof the surface-plasmonexcitationprocessfor SERSwe
can usethe results of the last section.We simply replacethe quantity 1 — R in eq. (5.21) with the
roughness-inducedpower absorbanceA of the surface.The resulting equationgives again an upper
limit on the field enhancement,since it assumesa coherentscatteringinto surfaceplasmonsover a
length a

1, and it doesnot allow for an increaseds~producedby the roughness.The quantityA has
been measuredfor Ag film roughenedby overgrowing on a CaF

2 layer [122,123] and for Ag
electrodes roughened by electrochemical cycling in a pyridine solution [124]. Both typesof roughening
are known to produceSERS. In either caseA is on the orderof a few percentin the 2—3 eV region,
which implies a maximumfield enhancementof order unity. We can conclude,therefore,that random
roughnessdoesnot lead to a significant SERSgain throughthe processof exciting propagatingsurface
plasmons.

Next weconsiderthe effect randomroughnesshason the emitted radiation.A generaldiscussionof
theoreticalmethodsfor dealing with random roughnesshasbeen given by Maradudin [114].The
methodwe usehasbeenoutlined by us in an earlier publication[43],andit is similar to that described
by Kroger andKretschmann[125]andothers[114,126]. The idea is that the electric fieldsof thedipole
oscillatingat the RamanfrequencyWR drive currentsin the nearbyroughnessfeatures,andwe calculate
the net radiation produced.The roughnessinducedcurrentscan be representedin the form

j(r) = —iwRh(p)E(p)3(z), (5.23)

whereE(p) is theelectricfield producedby the moleculardipole andh(p), which hasthedimensionsof
a length,is the polarizability perunit areaof the surface.The quantity h(p) is a statisticalquantity that
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can be characterizedby an ensembleaverage.We can think of the function h(p) as assigningto each
bump on the surfacea polarizabilitycharacteristicof the shapeandsize of the bump.For example, in
the limit of discreteroughnessfeaturesh(p) could be approximatedas a sum of deltafunctions

~

wherea1 is the polarizability of the featureat p~.In this casea andP1 would be consideredas random
variables.For protrusionswith an aspectratio of order unity, h(p) approximatelydescribesthe height
of their deviationsfrom themeansurface.

To estimatethe magnitudeof the radiation producedby the current (5.23) we assumethe molecular
dipole is oriented I to the meansurface~(WR) = ~~±(WR)~ and take a Gaussiandistribution for h(p),

(h(p)) = 0 and (h(p)h(p’)) = (h

2) exp(—~p— p’~2/o-2). (5.24)

In theseequations(...) representsan ensembleaverage.We further assumethat the molecule is very
close to the surface, which means that the near fields of the dipole dominate in exciting the
current (5.23). This also meansthat for calculatingthe long-wavelengthemission into photonsand
surfaceplasmonsthe current (5.23) is equivalentto a point-like dipole ~rough given by

FLrough = f dph(p)E~(p)~. (5.25)

The radiatedpowercan now be calculatedfrom thegeneralformula (3.15) for the powerradiatedby a
dipole nearthe surface.Taking ~.L

11= 0 and ,LL~ = rough - ~, we find

Pmax

~rough = ~ (/.t~oug~)Re f dp ~ (1+ r~2exp{2iq1d}). (5.26)
El q1

(I

In the integraloverp we takePrnax to be slightly abovePsp, thesurfaceplasmonwavevector(3.19).The
assumptionhere is that emitted surfaceplasmonswill ultimately be scatteredinto photonsvia the
surfaceroughnessandthusareequivalentto the direct emissionof a photon.

The quantity that we must evaluateis

(IL~ough)= J dp dp’ (h(p)h(p’))E~(p)E~(p’). (5.27)

Since /.Lrough is concentratedin the nearzoneof the moleculardipole, we can usethe quasistaticlimit of
(3.14)for the electric fields

E~(p)= J dpp exp(ip - p — pd){1 + r12(p)}, (5.28)

wherehereandin thefollowing we havedroppedthe superscriptP from r12, it beingunderstoodthat r12
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is the P-polarizedreflection coefficient. We can now write (5.27) in the form

(/L~ough)= ~ Jdp dp’ dp dp’ (h(p)h(p’))p exp(-ip - p - pd){1 + r~2(p)}

x p’ exp(ip’ - p’ — p’d){l + r12(p’)}. (5.29)

To evaluatesomeof theseintegralsintroduceR = (p + p’)/2, r = p — p’, anduse (5.24),

(!.L~ough)= ~ J dR dr dp dp’ exp[ — r
2/o-2 — iR . (p — p’)

— ir - (p + p’)i2 — (p + p’)d]pp’{l + r~
2(p)}{1+ r12(p’)}. (5.30)

The integral over R yields 41T

26(p — p’), therefore(5.30) reducesto

= i~(h)J dr dp exp[—r2/cr2 — ir ~p— 2pd]p211+ r
12~

2. (5.31)

Performing the integrationover r and completingthe angularpart of thep integration we have

(/~ough)= 2~ruj~(h ) Jdpp3~1+ r
121

2 exp(-2pd- ff2p2/4). (5.32)

Without an explicit andsimple form for r
12 the remainingintegralcannotbe evaluatedin closedform.

However, if r12(p) is slowly varying, then onecan performthe integral approximatelyby evaluatingthe
factor 1 + rt2(p)1

2 at the positionwherethe remainingfactorsin the integrandpeak.In the cased ~ a-,
this peakoccursat p = \/6/o-, andweobtain

(P.~ough) = (161T2~2(h2)/6~cr2)(1 + r
12(p \/6/a.)12. (5.33)

For the roughnessscalewehavein mind, a- 50 A, this meansp -~ 0.05A~or p/2kF—= 0.02. Referring
to fig. 3 we seethat for p valuesin this rangewe can take r12 = 1 with little loss of accuracygiving

(ILrough) = 64ir
2(h2)Ii2/s~a-2. (5.34)

The total scatteredpowerproducedby the roughnessis now given by (5.26),which we write in the form

~rough= 64~2(h2)[wR~2 Re J dpp3(1 + r
12 exp(2iqid))]. (5.35)

61o_ 61
0

The quantity in the squarebracketsis the sum of ~photon (3.18), which is the signal from a smooth
surface,and ~sp (3.21). We can thereforewrite

2~roughas a gain factor Grough multiplying the smooth
surface signal, ~rough = Grough ~photon where
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— 64ir
2(h2)

Grough — 22 (1 + ~SP/~phoion) . (5.36)

The fact that the ratio (h2)icr2 occursin (5.36) hasa simple physical interpretationthat could have
beenanticipatedon intuitive grounds.It tells us that the roughnessgain is proportionalto the scattering
strength of the typical roughnessfeature, which is (h2), multiplied by the surfacedensity of such
features,which is o~2.

To estimatethe magnitudeof Grough we needa model of the surfacetopographythat allows us to
estimate(h2)1u2.This is accomplishedby representingthe roughnessfeaturesthemselvesas polarizable
ellipsoidsfor which the polarizabilityalong thejth axis is [4]

a~= ~abc6
1(E2— Ei)/[6i + L1(62— E’)], (5.37)

wherea, b, andc are thesemi-axesof the ellipsoidandL1 is the depolarizationfactor. We takea1 to be
along the c axis, which is normal to the surface,and drop the j subscript.The “area” per ellipsoid is
then rrab, and (h

2)1’2 is given approximately by
(h2)1l2=~~i E2 E~ (5.38)

31T 6~+ L(6
2— El)’

andusing thisresult (5.36)becomes

,~ 2 2
— U~tC E2 El (1 ~ o~

‘—‘ rough — ‘ ~‘ SP/T phoion9a- Et+L(62—El)

For a sphereL = 1/3, for an extremelyoblateellipsoid in the flat direction L = 1, and for a needle
shapedone in the long direction L = 0.

The roughnessof a metal surfaceis usually characterizedby an rms roughnessheight 6 and a
correlationlength a- associatedwith the Gaussiancorrelation[114]. Typical experimentalvalues for a
“smooth” evaporatedmetal film are 6 = 10 A and a- = 100—200A. This sort of roughnesscan be
modeledby taking L = 1, c = 10 A, and a- = 102 A in (5.39). For a smoothfilm we also cannotinclude
the term ~SP/~photon in (5.39), sinceit is known that the intrinsic dampingin such films far outweighs
the radiation loss of surfaceplasmonsdueto roughnessscattering[82]. Applying theseresultsto a Ag
film at hw = 2eV, we find Grough = 0.1. Our model thuspredictsvery little roughnessgain for asmooth
evaporatedfilm.

For a highly roughenedsurfacethe situation is quite different. We envision the roughnesshereas a
densepacking of boss-like or somewhatprolate protrusionsthat might be formed during the elec-
trochemical cycling of an electrode or when an evaporated film is grown and maintained at low
temperatures.The roughnessgain now increasesrapidly with increasingaspectratio c/a. This is shown
in fig. 29 where we plot Grougho

2Ic2from eq. (5.39) as a function of cia. For thesecalculationswe have
assumeda prolatespheroidalprotrusion (a = b) for which the depolarizingfactor is given by [4]

L = 1_e2{in(~_t~)— 2e}, (5.40)
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c/a

Fig. 29. Normalizedroughnessgain calculatedfrom eq. (5.39) for prolatespheroidalroughnessfeatureson Ag at hUR = 2 eV, e
2= —19 +0.671.

wherethe eccentricitye = (1 — a
2/c2)L’2. The calculatedresultsin the figure arenormalizedwith respect

to the ratio c2/a-2. However, we would expectthis ratio to be of orderunity for the sort of roughness
considered.We can concludethat a roughnessgain of 2 to 3 ordersof magnitudeis reasonable.This
roughnessgain is a long-rangeeffect in thesensethat the moleculedoesnot haveto touchthemetal. In
fact the rangeis given approximatelyby the correlationlength a-, which will typically be many tensof
angstroms.

It is temptingto extendthecalculationshown in fig. 29 to largeenoughaspectratiosso that the real
part of the denominatorin (5.37) vanishes.This will certainlyproducevery largeroughnessgains.For
Ag at hw = 2 eV this would occur at L = 0.05 (cia = 5.4), at which point Grougha-2iC2 = 6 X 106. A

roughnessgain of thismagnitudepushesthe presentsimplemodelwell beyondits region of validity. We
haveimplicitly assumedthat the field driving eachroughnessfeatureis that from the original molecular
dipole, andthat the fields from otherroughnessfeaturescan be ignored.If thereis a resonancein the
polarizability of the protrusions,then this assumptionwill no longer hold and we must solve self-
consistentlyfor the fields. Theresultwill bea severelylimited gain,sincethe resonancefrequencyfor a
given aspectratio will be shiftedto higher frequencies.A calculationthat showsthis effect for an island
film structureis given by Eagen[127].

5.4. Resonantmicrostructures,particle arrays and islandfilms

In this final SERSsection we considerthe effect of resonantmicrostructures.Most of the experi-
mentson thesestructuresinvolve samplescomposedof photolithographicallyproducedmetalparticle
arrays[54,55] or metal-islandfilms [51—53,128]. However, the essentialphysicsthat gives rise to large
SERSenhancementsis quite simple andcan be demonstratedby consideringa single isolatedellipsoid.
The moleculeis in thevicinity of ametalparticlethat hasa resonancein its polarizability.The molecule
feels an enhancedfield at w

0 dueto the polarizationof the metal particle. In addition, the molecular
dipole at WR polarizesthe metal particle, greatly enhancingthe emitted fields. Since W~and ~R are
nearly the same, therecan be a two-way enhancement.The metal particle acts as an antennathat
increasesboth theincidentandemittedfields. Therehavebeenseveralprevioustreatmentsof thiseffect
[60—62,129—133],thereforeour discussionwill be brief andwill omit manydetails.
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Fig. 30. Geometryfor moleculenearaspheroidalmetalparticle.

Considera moleculea distancer from a polarizablemetal particle,as shownin fig. 30, subject to an
appliedfield E0 exp(— iWot). For simplicity wetakethe particleto be a spheroidwith the c axis along~
~tndthe a and b axesequal.The assumptionis that the molecule is sometensof angstromsfrom the
surfaceof the particle, so that image effects are negligible and also that we need consideronly the
dipole fields inducedin the spheroid.The inducedmoleculardipole at w~can be written

/L(Wo) = ai(Eo+ [3,.t~(w0)’ — /2~(wo)]/E1r
3), (5,41)

where~s(wo) is the induceddipole moment in the spheroidgiven by

iis(wo) = a~i
1{i . Eo+ [3~ - ~I.L(Wo)~r — i - /z(wo)]/E1r

3}~

+ a~±{Eo—~ - Eoi + [3(jl_ ~ . ~)~i(w
0). ~ z(0)+ ~ - ~(Wo)i]i6ir

3}, (5.42)

in which a~,
11and a~,±are the andI componentsof the spheroidpolarizability given by (5.37). We

havenot includedherethe imagefield from the moleculardipole, whichwould correspondto a term on
the right side of (5.41) proportional to /L(Wo). The eqs. (5.41) and (5.42) can be solved for arbitrary
orientationsof the field and positions of the molecule.However, the primary effect leading to large
SERS gains is a resonancein one of the spheroid polarizability components,and it suffices to
demonstratethe magnitudeof the effect for the simplestgeometry.We thustakethe appliedfield along
the long axis of the spheroidE0 = E0i andthe moleculesituatedon this axis abovethe spheroid.The
spheroidpolarizability along the c axis is designatedsimply as a~(W).Solving the aboveequationsfor

p~(Wo)= a1{Eo+ 2a~(wo)EoiE1r
3} 2a

1a~E0ie1r
3, (5.43)

where we neglect terms involving ~(wo)/str3 in (5.42), since there is no resonancein at and the
resonancein a, is assumedto be sufficiently largethat a,(wo)/s

1r
3~-~‘ 1. As in section5.1, therewill be a
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dipole of magnitudeCR~L(WO)generatedat WR by the internalvibration in the molecule.This dipole will

then drive the spheroidat WR inducing a dipole moment
~~s(Wg) = 2cR/L(Wo)a,(wR)/61r

3. (5.44)

The Raman signal is proportionalto p~(WR) + i~(~)I~i~s(WR)~2.In the absenceof the spheroidthe
Ramansignal is ~ thereforethe SERSenhancementG is given approximatelyby

G = 16Ia,(Wo)a,(WR)I2/6~r12- (5.45)

The leadingfactor of 16 would be 1 if the moleculewere chosento lie on the x axis. Referringto eq.
(5.37), the resonancecondition is Ei + L(e~—Li) = 0, at which point a,= a2c6

1(62—e1)i3Le’~.Typical
values for a 3: 1 Ag spheroid (L = 0.109, e~= —8.2, hWO = 2.66eV, E~= 0.34) with c = 300A and
r = 350A yield G = 2 x iOn. Correspondingvalues for a 4: 1 spheroid(L = 0.0754, e~= —12.3, hw0 =

2.33eV, e~= 0.5) give G= 1 x iO~.The abovediscussiongives the correct order of magnitudeandis
generallyapplicable to very small spheres.In practice, however, two important refinementsto the
theory areneeded,andwe addressthesebelow.

The first refinementconcernsthe use of the quasistaticapproximation.The expression(5.37) for the
polarizabilityof an ellipsoid is derivedusing this approximation,the usual justification for whichbeing
that the dimensionsof the particleare small comparedto the wavelengthof light. The requirementis
actuallymuchmorelimited. As shownby thecalculationsof Kerker et al. [61]for spheresandBarberet
al. [62] for spheroids,significant deviationsfrom the quasistaticpolarizability of a particleoccur even
when its size is of orderA/10, which is the casein most experiments.Wokaun et al. [133] haveshown
that the first-order correctionsproducedby the full retardedsolutions are associatedwith radiation
damping,and that thesecan be calculatedquite simply. The induceddipole moment in the spheroid
producesa radiation reactionfield proportionalto ~, but 900 out of phase.Representingthis field as
Er = i/3ji~,where /3 is a real constantto be determined,the inducedmoment on the spheroidcan be
written,

= a,{Eo+ i/3p~(Wo)} or ~, = a,Eo/(1 — iaj3). (5.46)

Here a, is takento be real. The work doneon thisdipole by the externalfield is given by (3.1)

—~wIm(,a~Eo)= ~Wa~/3E~/(1+ a~f32). (5.47)

The powerradiatedby the dipole is given by the Larmorformula (3.11)

e~
2W4I,L,I2— E~2W4 a~E~ (5 48
3c3 — 3c3 1+a~f32~ - )

Equatingthe right-handsidesof thesetwo equationsgives the valueof

/3 = 6V22w3I3c3. (5.49)

Theeffectivepolarizability of the spheroidwritten as a,/(1— iaj3) now becomes
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e1V 6261

aeff — ~ E~+ (62~Ei)[L — i4ir
2 VI3A3]’ (5.50)

where A = 2lrciWE ~/2 is the wavelength of light in medium 1 and V = 4ira2c/3 is the volume of the
spheroid. This equation represents the first-order correction to (5.37) produced by radiation damping.
The correctionis implementedby simply replacingthe depolarizationfactor L by L—i4ir2V/3A3. The
new resonance condition is

E~+ L(e~—Ei) + 47r2E’~V/3A3= 0, (5.51)

so that thereis a small shift of the resonanceto lower frequencies.More important is the broadening
and the reduction in the peak value at resonance, which is now given by

s
1V E~E~ 52amax 4ir LE~+4i~

2(e
1—6~)Vi3A

3 (5.

This result indicatesthat the peakgain for large particlesis independentof the particle geometryand
becomesa function of frequencyonly, falling off rapidly at high frequencies.

The secondrefinementconcernsthe placing of the molecule near the tip of a prolate spheroid or
nearthe edgeof an oblateone.The field from the spheroidwill be concentratedin theseregionsof high
curvatureand will be muchlargerthansimply the dipolar componentincluded in (5.41).This effect has
beenreferredto as the “lightning rod” effect, andthereis someexperimentalevidencethat it may be
important [134]. It is quite easyto calculatethe enhancementof thepump field dueto this effect.Again
taking E

0 alongthe axis of the prolatespheroid,the field inside the spheroidis uniform andgiven by [4]

E1~= {Ei/[Ei + L(62— Ei)]}Eo. (3.53)

At the tip of the spheroidthe field is normal to the surface,and thereforethe field just outsidecan be
determinedfrom the continuity of the normalcomponentof D,

Eout = {62/[Et + L(E2 — Ei)]}Eo. (5.54)

Following Wokaunet al. [133],we define f(wo) as the enhancementfactor for the field at W~including
radiation damping.The moleculardipole inducedat w~is then given by ~t(w0)= f(wo)atEo, where

f(w) = 62(W)i{E1 + [62(W) — Ei][L — i4ir
2V13A3}}. (5.55)

The dipole inducedat WR, which is the sum of the moleculardipole cR~L(Wo)and the dipole induced
in the spheroid,is enhancedby exactlythe samefactorf, but evaluatedat ~R [130]. The SERSgain G
for a moleculeat the tip of the spheroidis then

G = If(wo)f(WR)12. (5.56)

Calculatedresultsof Gvs. hco
0 for Ag spheroidsof differentaspectratiosandvolumesareshownin fig.

31. The double-peakbehaviorof the solid curves(the onesfor the smaller spheroids)arises from the
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Fig. 31. CalculatedRamangainfrom eq. (5.56)for aipoleculeon thetip of an isolatedprolateAg spheroid.The Ramanshift is 1000cm
t.The solid

curvesarefor c = 50 A, thedashedonesfor c = 500A.

fact that G hasa maximum when either f(wo) or f(WR) hasa maximum.The separationof the peaks
thus representsthe Ramanshift. Note that, due to the radiation damping, the larger spheroidshave
reducedpeakgains,andthat all of the gaincurvesfall off rapidly at high frequency.To include image
enhancementeffects in these calculations, we simply multiply the gains calculatedhere by those
calculatedin section5.1.

Severaladditional modificationsto the theory mustbe includedbeforeresultssuch as thosein fig. 31
can be comparedwith experiment.The most importantof theseis to average(5.56) overthe surfaceof
the spheroid.This reducesthe gain substantiallybut doesnot shift the resonance.As an example,for
3: 1 oblate spheroidsLiao and Stern [55] estimate the averagedgain to be about two orders of
magnitudebelow thepeakgain.Also to be includedarethe imagefield effect betweenthe spheroidand
its substrateand the interactionsbetweenthe neighboring spheroids.These last two effects can be
characterizedby parameters/3 image and$~to be added to the depolarizationfactor L [129].The /3
parameterswere originally introduced in the analysis of optical propertiesof metal-island films
[127,129,135, 136]. For thecaseof oblatespheroids(which includesmostexperimentalsituations)their
effectsare generallysmall. For prolatespheroids,however,the ~ term can leadto a large positive
shift of the resonancefrequencyas the densityof particlesincreases.

Metal-island films show a peaked resonantoptical absorbancespectrumarising from the same
particle resonancesdiscussedabove. The close correlation observedexperimentally between the
absorbancespectraand the SERSexcitation profiles in such films demonstratesconvincingly that the
samemechanismis operativein both cases[52,54]. Evenmoreconvincingevidencefor the importance
of the particle resonancesis the demonstratedagreementbetweentheory and experiment,both in
lineshapeand magnitude,for SERS excitation profiles on ordered arrays of Ag and Au particles
[55,133]. None of theseexperiments,however,precludesthe possibility that thereis a short range
(atomic scale?)mechanismthat hasno resonantstructureand contributesa factor of 10 to 100 to the
SERSgains. Indeed,thereare severalindependentobservationssupportingjust such a short range,
possiblymolecularspecific enhancement.(1) Otto [94] analyzedthe opticaldataon Ag-island films by
Yamaguchiet al. [135,136] andconcludedthat only aboutiO~—iO~of the SERSgainsin such films can
be attributedto the particle resonances,while enhancementsof 105_106are often seen.(2) Seki [53]
foundthat Ag-island films gaveSERSfor pyridine but not for CO, while cold-grownAg samplesgave
SERSfor both molecules.Theparticleresonancesshouldenhanceall moleculesequally. (3) Sandaet al.
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[106] found a long-rangeSERS gain of about 102 associatedwith the surface plasmon excitation
mechanismdiscussedin section5.2 andan additionalvery short-rangeeffectalsoof about102 associated
with the first monolayer.

It is clear from the experimentalevidencethat a large part of the SERSgain observedon surfaces
with controlled roughness(gratings,metal islands, or particle arrays)can be attributedto electromag-
netic effectsof the sort discussedin this chapter.The situationfor randomly roughenedsurfacesis less
clear. However, Murray and co-workers [137,138] have observedthat a long-range mechanism
(50—100A) exists on a variety of randomly roughenedAg surfaces.This long-rangeeffect could arise
from the particle resonancesdescribedabove or from the roughness-outcouplingeffect discussedin
section5.3. More likely a combinationof botheffects is occurring,with the formerbeingfavoredon the
CaF2overgrownAg layers,which are island-like,andthe latterbeingfavoredon the cold-grownAg films,
which havea smallerroughnessscale.

Appendix A

We give here a brief derivation of the identities (4.9) and (4.10) using standardreferences.The
discussionis essentiallythe sameas that given in ref. [42]and is repeatedherefor completeness.We
begin by writing

exp[ip -p — p(z — d)] = exp[—(p2 - ip)- r1] = ~ ~ [cos Oi - i sin 0~cos(q51- ~)]‘. (Al)

Now, using a formulaon p. 55 of ref. [751,

[cos Oi— i sin 0~cos(~1— ~)]‘ = P1(cos9I)+ 2 ~ (/ ~)! P7’(cos0~)cos m(~1—

P~(cos0i)exp[im(~1—~)], (A.2)

whereto get this last form we haveused

PT
m(x)=(-)m ~~m~P~(x). (A.3)

Putting(A.2) in (A.1) we get the identity (4.9).
To get (4.20)we beginwith theformula

PI(cos 0) = (1+1)! J dttt e(c0sOJm(t sin 0), (0<0< ~/2), (A.4)

given on p. 68 of ref. [75]. Using (A.3) and the relation

P7’(—x)= (_)I_mprn(x) (A.5)
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we can write

P~(cos0~)= (lu)’ J dt tt exp(tCOS 0i)Jm(t sin 0k), ITi2 <01< IT. (A.6)

We recall nowthe well-known integralrepresentationof the Besselfunction, given on p. 26 of ref. [75],

Jm(Z)= ~ J dqS exp[i(z cos~ + m~)]. (A.7)

Putting this in (A.6) and making the changesof integrationvariables, t—*pr
1, ~ -~ — ~, we get the

identity (4.10).
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